15 research outputs found

    The Therapeutic Potential of Human Umbilical Cord Blood Transplantation for Neonatal Hypoxic-Ischemic Brain Injury and Ischemic Stroke

    Get PDF
    Human umbilical cord blood (HUCB) cells are rich source of immature stem cells, which have the potential to repair lost tissue. Intractable central nervous system (CNS) disorders are important targets for regenerative medicine, and the application of HUCB cells is being investigated in animal models of CNS disorders. Transplantation of HUCB has induced functional improvements in these animal models due to multiple therapeutic effects including neuroprotection, anti-inflammation, angiogenesis, and neurogenesis. HUCB cells are easily available and safer than other stem cells used in transplantation therapy. In this review, we focus on HUCB transplantation as an encouraging therapeutic approach for animal models of neonatal hypoxic-ischemic brain injury and ischemic stroke

    Sphingosine 1-Phosphate (S1P) in the Peritoneal Fluid Skews M2 Macrophage and Contributes to the Development of Endometriosis

    Get PDF
    Sphingosine 1-phosphate (S1P), an inflammatory mediator, is abundantly contained in red blood cells and platelets. We hypothesized that the S1P concentration in the peritoneal cavity would increase especially during the menstrual phase due to the reflux of menstrual blood, and investigated the S1P concentration in the human peritoneal fluid (PF) from 14 non-endometriosis and 19 endometriosis patients. Although the relatively small number of samples requires caution in interpreting the results, S1P concentration in the PF during the menstrual phase was predominantly increased compared to the non-menstrual phase, regardless of the presence or absence of endometriosis. During the non-menstrual phase, patients with endometriosis showed a significant increase in S1P concentration compared to controls. In vitro experiments using human intra-peritoneal macrophages (MΦ) showed that S1P stimulation biased them toward an M2MΦ-dominant condition and increased the expression of IL-6 and COX-2. An in vivo study showed that administration of S1P increased the size of the endometriotic-like lesion in a mouse model of endometriosis

    Detection of Merkel cell polyomavirus in cervical squamous cell carcinomas and adenocarcinomas from Japanese patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Merkel cell polyomavirus (MCPyV) was identified originally in Merkel cell carcinoma (MCC), a rare form of human skin neuroendocrine carcinoma. Evidence of MCPyV existence in other forms of malignancy such as cutaneous squamous cell carcinomas (SCCs) is growing. Cervical cancers became the focus of our interest in searching for potentially MCPyV-related tumors because: (i) the major histological type of cervical cancer is the SCC; (ii) the uterine cervix is a common site of neuroendocrine carcinomas histologically similar to MCCs; and (iii) MCPyV might be transmitted during sexual interaction as demonstrated for human papillomavirus (HPV). In this study, we aimed to clarify the possible presence of MCPyV in cervical SCCs from Japanese patients. Cervical adenocarcinomas (ACs) were also studied.</p> <p>Results</p> <p>Formalin-fixed paraffin-embedded tissue samples from 48 cervical SCCs and 16 cervical ACs were examined for the presence of the MCPyV genome by polymerase chain reaction (PCR) and sequencing analyses. PCR analysis revealed that 9/48 cervical SCCs (19%) and 4/16 cervical ACs (25%) were positive for MCPyV DNA. MCPyV-specific PCR products were sequenced to compare them with reference sequences. The nucleotide sequences in the MCPyV large T (<it>LT</it>)-sequenced region were the same among MCPyV-positive cervical SCCs and AC. Conversely, in the MCPyV viral protein 1 (<it>VP1</it>)-sequenced region, two cervical SCCs and three cervical ACs showed several nucleotide substitutions, of which three caused amino acid substitutions. These sequencing results suggested that three MCPyV variants of the VP1 were identified in our cases. Immunohistochemistry showed that the LT antigen was expressed in tumor cells in MCPyV-positive samples. Genotyping of human HPV in the MCPyV-positive samples revealed that infected HPVs were HPV types 16, 31 and 58 for SCCs and HPV types 16 and 18 for ACs.</p> <p>Conclusions</p> <p>This study provides the first observation that MCPyV coexists in a subset of HPV-associated cervical cancers from Japanese patients. The prevalence of MCPyV in these lesions was close to that observed in the cutaneous SCCs. Further worldwide epidemiological surveys are warranted to determine the possible association of MCPyV with pathogenesis of cervical cancers.</p

    Nausea and vomiting during pregnancy associated with lower incidence of preterm births: the Japan Environment and Children’s Study (JECS)

    No full text
    Abstract Background Nausea and vomiting during pregnancy (NVP) is considered to be associated with favorable fetal outcomes, such as a decreased risk for spontaneous abortion. However, the relationship between NVP and preterm births remains unknown. This study was conducted to evaluate the association between NVP and the risk of preterm births. Methods The dataset of a birth cohort study, the Japan Environment and Children’s Study (JECS), was retrospectively reviewed. Participants’ experience of NVP prior to 12 gestational weeks were evaluated by a questionnaire administered from 22 weeks of pregnancy to 1 month before delivery. NVP responses were elicited against four choices based on which the study population was divided into four subcohorts. Preterm birth was the main study outcome. Logistic regression analysis was used to quantify an association between NVP and risk of preterm birth. Results Of 96,056 women, 79,460 (82.7%) experienced some symptoms of NVP and 10,518 (10.9%) experienced severe NVP. Compared to those who did not experience NVP, women with severe NVP had lower odds for preterm birth [adjusted odds ratio (aOR) 0.84, 95% confidence interval (95% CI) 0.74–0.95]. An even lower OR was found among very preterm birth and extremely preterm birth (aOR 0.44, 95% CI 0.29–0.65). Conclusion An inverse association exists between NVP and preterm births, especially, very preterm births and extremely preterm births

    Induction of regional chemokine expression in response to human umbilical cord blood cell infusion in the neonatal mouse ischemia-reperfusion brain injury model.

    No full text
    Regenerative medicine using umbilical cord blood (UCB) cells shows promise for the treatment of cerebral palsy. Although the efficacy of this therapy has been seen in the clinic, the mechanisms by which UCB cells interact and aid in the improvement of symptoms are not clear. We explored the chemokine expression profile in damaged brain tissue in the neonatal mouse ischemia-reperfusion (IR) brain injury model that was infused with human UCB (hUCB) cells. IR brain injury was induced in 9-day-old NOD/SCID mice. hUCB cells were administered 3 weeks post brain injury. Chemokine expression profiles in the brain extract were determined at various time points. Inflammatory chemokines such as CCL1, CCL17, and CXCL12 were transiently upregulated by 24 hours post brain injury. Upregulation of other chemokines, including CCL5, CCL9, and CXCL1 were prolonged up to 3 weeks post brain injury, but most chemokines dissipated over time. There were marked increases in levels of CCL2, CCL12, CCL20, and CX3CL1 in response to hUCB cell treatment, which might be related to the new recruitment and differentiation of neural stem cells, leading to the induction of tissue regeneration. We propose that the chemokine expression profile in the brain shifted from responding to tissue damage to inducing tissue regeneration. hUCB cell administration further enhanced the production of chemokines, and chemokine networks may play an active role in tissue regeneration in neonatal hypoxic-ischemic brain injury

    Additional file 2: Figure S2. of CCL11 promotes migration and proliferation of mouse neural progenitor cells

    No full text
    The immunostaining in the model mice of neonatal hypoxic-ischemic brain injury and the sham-operated mice. (A) PSA-NCAM immunostaining image of SVZ in the model mouse. Red: PSA-NCAM; blue: DAPI. Scale bar = 50 μm. (B) Number of PSA-NCAM-positive cells per slice. N = 8. The data are presented as the mean numbers of PSA-NCAM-positive cells in the injury side and the intact side ± SD. * P < 0.05. (C) Dcx immunostaining image of SVZ in the sham-operated mouse. N = 6. Green: Dcx; blue: DAPI. Scale bar = 50 μm. (D) Number of Dcx-positive cells per slice. N = 8. The data are presented as the mean numbers of Dcx-positive cells in the sham-operated side and the intact side ± SD. n.s. not significant. (PDF 655 kb
    corecore