17 research outputs found

    Patient-tailored adoptive immunotherapy with EBV-specific T cells from related and unrelated donors

    Get PDF
    BACKGROUND: Adoptive transfer of EBV-specific T cells can restore specific immunity in immunocompromised patients with EBV-associated complications. METHODS: We provide results of a personalized T-cell manufacturing program evaluating donor, patient, T-cell product and outcome data. Patient-tailored clinical-grade EBV-specific cytotoxic T-lymphocyte (EBV-CTL) products from stem cell donors (SCD), related third party donors (TPD) or unrelated TPD from the allogeneic T-cell donor registry (alloCELL) established at Hannover Medical School were manufactured by immunomagnetic selection using CliniMACS Plus or Prodigy device and EBV PepTivators EBNA-1 and Select. Consecutive manufacturing processes were evaluated and patient outcome and side effects were retrieved by retrospective chart analysis. RESULTS: Forty clinical-grade EBV-CTL products from SCDs, related or unrelated TPDs were generated for 37 patients with and without transplantation (Tx) history within 5 days (median) after donor identification. 34 patients received 1-14 EBV-CTL products (fresh and cryopreserved). EBV-CTL transfer led to complete response in 20 of 29 patients who were evaluated for clinical response. No infusion-related toxicity was reported. EBV-specific T cells in patients' blood were detectable in 16/18 monitored patients (89 %) after transfer and correlated with clinical response. CONCLUSION: In conclusion, personalized clinical-grade manufacturing of EBV-CTL products via immunomagnetic selection from SCD, related or unrelated TPD is feasible in a timely manner. Overall, EBV-CTL were clinically effective and well-tolerated. Our data suggest EBV-CTL as promising therapeutic approach for immunocompromised patients with refractory EBV-associated diseases beyond HSCT as well as patients with pre-existing organ dysfunction

    Posttransplant lymphoproliferative disease after pediatric solid organ transplantation.

    Get PDF
    Patients after solid organ transplantation (SOT) carry a substantially increased risk to develop malignant lymphomas. This is in part due to the immunosuppression required to maintain the function of the organ graft. Depending on the transplanted organ, up to 15% of pediatric transplant recipients acquire posttransplant lymphoproliferative disease (PTLD), and eventually 20% of those succumb to the disease. Early diagnosis of PTLD is often hampered by the unspecific symptoms and the difficult differential diagnosis, which includes atypical infections as well as graft rejection. Treatment of PTLD is limited by the high vulnerability towards antineoplastic chemotherapy in transplanted children. However, new treatment strategies and especially the introduction of the monoclonal anti-CD20 antibody rituximab have dramatically improved outcomes of PTLD. This review discusses risk factors for the development of PTLD in children, summarizes current approaches to therapy, and gives an outlook on developing new treatment modalities like targeted therapy with virus-specific T cells. Finally, monitoring strategies are evaluated

    Robust Identification of Suitable T-Cell Subsets for Personalized CMV-Specific T-Cell Immunotherapy Using CD45RA and CD62L Microbeads

    No full text
    Viral infections and reactivations remain a serious obstacle to successful hematopoietic stem cell transplantation (HSCT). When antiviral drug treatment fails, adoptive virus-specific T-cell transfer provides an effective alternative. Assuming that naive T cells (TN) are mainly responsible for GvHD, methods were developed to generate naive T-cell-depleted products while preserving immune memory against viral infections. We compared two major strategies to deplete potentially alloreactive T cells: CD45RA and CD62L depletion and analyzed phenotype and functionality of the resulting CD45RA−/CD62L− naive T-cell-depleted as well as CD45RA+/CD62L+ naive T-cell-enriched fractions in the CMV pp65 and IE1 antigen model. CD45RA depletion resulted in loss of terminally differentiated effector memory T cells re-expressing CD45RA (TEMRA), and CD62L depletion in loss of central memory T cells (TCM). Based on these differences in target cell-dependent and target cell-independent assays, antigen-specific T-cell responses in CD62L-depleted fraction were consistently 3–5 fold higher than those in CD45RA-depleted fraction. Interestingly, we also observed high donor variability in the CD45RA-depleted fraction, resulting in a substantial loss of immune memory. Accordingly, we identified donors with expected response (DER) and unexpected response (DUR). Taken together, our results showed that a naive T-cell depletion method should be chosen individually, based on the immunophenotypic composition of the T-cell populations present

    Variances in Antiviral Memory T-Cell Repertoire of CD45RA- and CD62L-Depleted Lymphocyte Products Reflect the Need of Individual T-Cell Selection Strategies to Reduce the Risk of GvHD while Preserving Antiviral Immunity in Adoptive T-Cell Therapy

    No full text
    Introduction!#!Viral infections and reactivations still remain a cause of morbidity and mortality after hematopoietic stem cell transplantation due to immunodeficiency and immunosuppression. Transfer of unmanipulated donor-derived lymphocytes (DLI) represents a promising strategy for improving cellular immunity but carries the risk of graft versus host disease (GvHD). Depleting alloreactive naïve T cells (T!##!Methods!#!T-cell responses against ppEBV_EBNA1, ppEBV_Consensus and ppAdV_Hexon within T!##!Results!#!According to differences in the phenotype composition, antigen-specific T-cell responses in CD45RA!##!Conclusion!#!Taken together, our results indicate that CD45RA depletion is a more suitable strategy for generating

    Inhibition of Heme Oxygenase-1 Activity Enhances Wilms Tumor-1-Specific T-Cell Responses in Cancer Immunotherapy

    No full text
    Wilms tumor protein-1 (WT1) is an attractive target for adoptive T-cell therapy due to its expression in solid tumors and hematologic malignancies. However, T cells recognizing WT1 occur in low frequencies in the peripheral blood of healthy donors, limiting potential therapeutic possibilities. Tin mesoporphyrin (SnMP) is known to inhibit heme oxygenase-1 (HO-1), which has been shown to boost the activation and proliferation of human virus-specific T cells. We analyzed the influence of this effect on the generation of WT1-specific T cells and developed strategies for generating quantities of these cells from healthy donors, sufficient for adoptive T-cell therapies. HO-1 inhibition with SnMP increased WT1-specific T-cell frequencies in 13 (26%) of 50 healthy donors. To assess clinical applicability, we measured the enrichment efficiency of SnMP-treated WT1-specific T cells in response to a WT1-specific peptide pool and a HLA-A*02:01-restricted WT1 peptide by cytokine secretion assay. SnMP treatment resulted in a 28-fold higher enrichment efficacy with equal functionality. In conclusion, pharmacological inhibition of HO-1 activity with SnMP results in more efficient generation of functionally active WT1-specific T cells. This study demonstrates the therapeutic potentials of inhibiting HO-1 with SnMP to enhance antigen-specific T-cell responses in the treatment of cancer patients with WT1-positive disease

    CAR-Ts redirected against the Thomsen-Friedenreich antigen CD176 mediate specific elimination of malignant cells from leukemia and solid tumors

    Get PDF
    This research was in part funded by: "From CARs to TRUCKs: Induction of a concerted anti-tumor immune response by engineered T cells" (Deutsche Krebshilfe/German Cancer Aid-Priority Program in Translational Oncology #111975), "The Thomsen-Friedenreich antigen CD176: New target of chimeric antigen receptor (CAR)-modified immune cells in adoptive cancer immunotherapy" (Deutsche Kinderkrebsstiftung, Projekt DKS 2020.17), and Glycotope GmbH. AcknowledgmentsIntroduction: Chimeric antigen receptor-engineered T cells (CAR-Ts) are investigated in various clinical trials for the treatment of cancer entities beyond hematologic malignancies. A major hurdle is the identification of a target antigen with high expression on the tumor but no expression on healthy cells, since "on-target/off-tumor" cytotoxicity is usually intolerable. Approximately 90% of carcinomas and leukemias are positive for the Thomsen-Friedenreich carbohydrate antigen CD176, which is associated with tumor progression, metastasis and therapy resistance. In contrast, CD176 is not accessible for ligand binding on healthy cells due to prolongation by carbohydrate chains or sialylation. Thus, no "on-target/off-tumor" cytotoxicity and low probability of antigen escape is expected for corresponding CD176-CAR-Ts. Methods: Using the anti-CD176 monoclonal antibody (mAb) Nemod-TF2, the presence of CD176 was evaluated on multiple healthy or cancerous tissues and cells. To target CD176, we generated two different 2 generation CD176-CAR constructs differing in spacer length. Their specificity for CD176 was tested in reporter cells as well as primary CD8 T cells upon co-cultivation with CD176 tumor cell lines as models for CD176 blood and solid cancer entities, as well as after unmasking CD176 on healthy cells by vibrio cholerae neuraminidase (VCN) treatment. Following that, both CD176-CARs were thoroughly examined for their ability to initiate target-specific T-cell signaling and activation, cytokine release, as well as cytotoxicity. Results: Specific expression of CD176 was detected on primary tumor tissues as well as on cell lines from corresponding blood and solid cancer entities. CD176-CARs mediated T-cell signaling (NF-κB activation) and T-cell activation (CD69, CD137 expression) upon recognition of CD176 cancer cell lines and unmasked CD176, whereby a short spacer enabled superior target recognition. Importantly, they also released effector molecules (e.g. interferon-γ, granzyme B and perforin), mediated cytotoxicity against CD176 cancer cells, and maintained functionality upon repetitive antigen stimulation. Here, CD176L-CAR-Ts exhibited slightly higher proliferation and mediator-release capacities. Since both CD176-CAR-Ts did not react towards CD176 control cells, their response proved to be target-specific. Discussion: Genetically engineered CD176-CAR-Ts specifically recognize CD176 which is widely expressed on cancer cells. Since CD176 is masked on most healthy cells, this antigen and the corresponding CAR-Ts represent a promising approach for the treatment of various blood and solid cancers while avoiding "on-target/off-tumor" cytotoxicity

    Dissecting Epstein-Barr virus-specific T-cell responses after allogeneic EBV-specific T-cell transfer for central nervous system posttransplant lymphoproliferative disease

    No full text
    Epstein–Barr virus (EBV)-associated posttransplant lymphoproliferative disease (PTLD) with central nervous system (CNS) involvement is a severe complication after solid organ transplantation. Standard treatment with reduction of immunosuppression and anti-CD20 antibody application often fails leading to poor outcome. Here, we report the case of an 11-year-old boy with multilocular EBV-positive CNS PTLD 10 years after liver transplantation. Complete remission was achieved by repeated intravenous and intrathecal anti-CD20 antibody rituximab administration combined with intrathecal chemotherapy (methotrexate, cytarabine, prednisone) over a time period of 3 months. Due to the poor prognosis of CNS PTLD and lack of EBV-specific T-cells (EBV-CTLs) in patient’s blood, we decided to perform EBV-directed T-cell immunotherapy as a consolidating treatment. The patient received five infusions of allogeneic EBV-CTLs from a 5/10 HLA-matched unrelated third-party donor. No relevant acute toxicity was observed. EBV-CTLs became detectable after first injection and increased during the treatment course. Next-generation sequencing (NGS) TCR-profiling verified the persistence and expansion of donor-derived EBV-specific clones. After two transfers, epitope spreading to unrelated EBV antigens occurred suggesting onset of endogenous T-cell production, which was supported by detection of recipient-derived clones in NGS TCR-profiling. Continuous complete remission was confirmed 27 months after initial diagnosis
    corecore