440 research outputs found
Commercial Bank Exposure and Sensitivity to the Real Estate Market
In this study, we assess the balance sheet exposure of commercial banks to the real estate market, and develop a hypothesis on the potential systematic effects of real estate conditions across banks. By applying a seemingly unrelated regression (SUR) model to bank portfolios, we test for the relation between bank values and a real estate market proxy after controlling for general market and interest-rate conditions. We find a positive relationship between monthly bank returns and the real estate index, even after accounting for general market and interest-rate movements. The sensitivity of bank values to the real estate market has increased over time, and the bank-specific sensitivity coefficient is positively related to the bank's balance sheet exposure to real estate.
Detection of the compressed primary stellar wind in eta Carinae
A series of three HST/STIS spectroscopic mappings, spaced approximately one
year apart, reveal three partial arcs in [Fe II] and [Ni II] emissions moving
outward from eta Carinae. We identify these arcs with the shell-like
structures, seen in the 3D hydrodynamical simulations, formed by compression of
the primary wind by the secondary wind during periastron passages.Comment: Accepted for publication in the Astrophysical Journal Letter
3D Radiative Transfer in Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds
Eta Carinae is an ideal astrophysical laboratory for studying massive binary
interactions and evolution, and stellar wind-wind collisions. Recent
three-dimensional (3D) simulations set the stage for understanding the highly
complex 3D flows in Car. Observations of different broad high- and
low-ionization forbidden emission lines provide an excellent tool to constrain
the orientation of the system, the primary's mass-loss rate, and the ionizing
flux of the hot secondary. In this work we present the first steps towards
generating synthetic observations to compare with available and future HST/STIS
data. We present initial results from full 3D radiative transfer simulations of
the interacting winds in Car. We use the SimpleX algorithm to
post-process the output from 3D SPH simulations and obtain the ionization
fractions of hydrogen and helium assuming three different mass-loss rates for
the primary star. The resultant ionization maps of both species constrain the
regions where the observed forbidden emission lines can form. Including
collisional ionization is necessary to achieve a better description of the
ionization states, especially in the areas shielded from the secondary's
radiation. We find that reducing the primary's mass-loss rate increases the
volume of ionized gas, creating larger areas where the forbidden emission lines
can form. We conclude that post processing 3D SPH data with SimpleX is a viable
tool to create ionization maps for Car.Comment: 18 pages, 11 figures, accepted for publication in MNRA
X-ray Modeling of \eta\ Carinae and WR140 from SPH Simulations
The colliding wind binary (CWB) systems \eta\ Carinae and WR140 provide
unique laboratories for X-ray astrophysics. Their wind-wind collisions produce
hard X-rays that have been monitored extensively by several X-ray telescopes,
including RXTE. To interpret these RXTE X-ray light curves, we model the
wind-wind collision using 3D smoothed particle hydrodynamics (SPH) simulations.
Adiabatic simulations that account for the absorption of X-rays from an assumed
point source at the apex of the wind-collision shock cone by the distorted
winds can closely match the observed 2-10keV RXTE light curves of both \eta\
Car and WR140. This point-source model can also explain the early recovery of
\eta\ Car's X-ray light curve from the 2009.0 minimum by a factor of 2-4
reduction in the mass loss rate of \eta\ Car. Our more recent models relax the
point-source approximation and account for the spatially extended emission
along the wind-wind interaction shock front. For WR140, the computed X-ray
light curve again matches the RXTE observations quite well. But for \eta\ Car,
a hot, post-periastron bubble leads to an emission level that does not match
the extended X-ray minimum observed by RXTE. Initial results from incorporating
radiative cooling and radiatively-driven wind acceleration via a new
anti-gravity approach into the SPH code are also discussed.Comment: 5 pages, 3 figures, Proceedings of the 39th Li\'ege Astrophysical
Colloquium, held in Li\`ege 12-16 July 2010, edited by G. Rauw, M. De Becker,
Y. Naz\'e, J.-M. Vreux, P. William
The three-dimensional structure of the Eta Carinae Homunculus
We investigate, using the modeling code SHAPE, the three-dimensional
structure of the bipolar Homunculus nebula surrounding Eta Carinae, as mapped
by new ESO VLT/X-Shooter observations of the H2 micron
emission line. Our results reveal for the first time important deviations from
the axisymmetric bipolar morphology: 1) circumpolar trenches in each lobe
positioned point-symmetrically from the center and 2) off-planar protrusions in
the equatorial region from each lobe at longitudinal (~55 degrees) and
latitudinal (10-20 degrees) distances from the projected apastron direction of
the binary orbit. The angular distance between the protrusions (~110 degrees)
is similar to the angular extent of each polar trench (~130 degrees) and nearly
equal to the opening angle of the wind-wind collision cavity (~110 degrees). As
in previous studies, we confirm a hole near the centre of each polar lobe and
no detectable near-IR H2 emission from the thin optical skirt seen prominently
in visible imagery. We conclude that the interaction between the outflows
and/or radiation from the central binary stars and their orientation in space
has had, and possibly still has, a strong influence on the Homunculus. This
implies that prevailing theoretical models of the Homunculus are incomplete as
most assume a single star origin that produces an axisymmetric nebula. We
discuss how the newly found features might be related to the Homunculus
ejection, the central binary and the interacting stellar winds. We also include
a 3D printable version of our Homunculus model.Comment: 14 pages, 7 color figures, 1 interactive 3D figure (Figure 5,
requires Adobe Reader), published in MNRAS. A 3D printable version of our
Homunculus model can be downloaded from
http://svs.gsfc.nasa.gov/vis/a010000/a011500/a011568/Eta_Car_Homunuculus_3D_model.zip
or from the 'Supporting Information' link in the electronic version of the
MNRAS articl
Constraints on decreases in Eta Carinae's mass loss from 3D hydrodynamic simulations of its binary colliding winds
Recent work suggests that the mass-loss rate of the primary star (Eta A) in
the massive colliding wind binary Eta Carinae dropped by a factor of 2-3
between 1999 and 2010. We present results from large- (r=1545au) and small-
(r=155au) domain, 3D smoothed particle hydrodynamic (SPH) simulations of Eta
Car's colliding winds for 3 Eta A mass-loss rates (2.4, 4.8, and 8.5 x 10^-4
M_sun/yr), investigating the effects on the dynamics of the binary wind-wind
collision (WWC). These simulations include orbital motion, optically thin
radiative cooling, and radiative forces. We find that Eta A's mass-loss rate
greatly affects the time-dependent hydrodynamics at all spatial scales
investigated. The simulations also show that the post-shock wind of the
companion star (Eta B) switches from the adiabatic to the radiative-cooling
regime during periastron passage. The SPH simulations together with 1D
radiative transfer models of Eta A's spectra reveal that a factor of 2 or more
drop in Eta A's mass-loss rate should lead to substantial changes in numerous
multiwavelength observables. Recent observations are not fully consistent with
the model predictions, indicating that any drop in Eta A's mass-loss rate was
likely by a factor < 2 and occurred after 2004. We speculate that most of the
recent observed changes in Eta Car are due to a small increase in the WWC
opening angle that produces significant effects because our line-of-sight to
the system lies close to the dense walls of the WWC zone. A modest decrease in
Eta A's mass-loss rate may be responsible, but changes in the wind/stellar
parameters of Eta B cannot yet be fully ruled out. We suggest observations
during Eta Car's next periastron in 2014 to further test for decreases in Eta
A's mass-loss rate. If Eta A's mass-loss rate is declining and continues to do
so, the 2014 X-ray minimum should be even shorter than that of 2009.Comment: 38 pages, 25 figures, 1 table. Accepted for publication in MNRA
Constraining the Properties of the Eta Carinae System via 3-D SPH Models of Space-Based Observations: The Absolute Orientation of the Binary Orbit
The extremely massive (> 90 Solar Mass) and luminous (= 5 x 10(exp 6) Solar Luminosity) star Eta Carinae, with its spectacular bipolar "Homunculus" nebula, comprises one of the most remarkable and intensely observed stellar systems in the galaxy. However, many of its underlying physical parameters remain a mystery. Multiwavelength variations observed to occur every 5.54 years are interpreted as being due to the collision of a massive wind from the primary star with the fast, less dense wind of a hot companion star in a highly elliptical (e approx. 0.9) orbit. Using three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the binary wind-wind collision in Eta Car, together with radiative transfer codes, we compute synthetic spectral images of [Fe III] emission line structures and compare them to existing Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) observations. We are thus able, for the first time, to constrain the absolute orientation of the binary orbit on the sky. An orbit with an inclination of i approx. 40deg, an argument of periapsis omega approx. 255deg, and a projected orbital axis with a position angle of approx. 312deg east of north provides the best fit to the observations, implying that the orbital axis is closely aligned in 3-1) space with the Homunculus symmetry axis, and that the companion star orbits clockwise on the sky relative to the primary
The Applied Meteorology Unit: Nineteen Years Successfully Transitioning Research Into Operations for America's Space Program
The Applied Meteorology Unit (AMU) provides technology development and transition services to improve operational weather support to America's space program . The AMU was founded in 1991 and operates under a triagency Memorandum of Understanding (MOU) between the National Aeronautics and Space Administration (NASA), the United States Air Force (USAF) and the National Weather Service (NWS) (Ernst and Merceret, 1995). It is colocated with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) and funded by the Space Shuttle Program . Its primary customers are the 45WS, the Spaceflight Meteorology Group (SMG) operated for NASA by the NWS at the Johnson Space Center (JSC) in Houston, TX, and the NWS forecast office in Melbourne, FL (MLB). The gap between research and operations is well known. All too frequently, the process of transitioning research to operations fails for various reasons. The mission of the AMU is in essence to bridge this gap for America's space program
He II 4686 emission from the massive binary system in Car: constraints to the orbital elements and the nature of the periodic minima
{\eta} Carinae is an extremely massive binary system in which rapid spectrum
variations occur near periastron. Most notably, near periastron the He II
line increases rapidly in strength, drops to a minimum value,
then increases briefly before fading away. To understand this behavior, we
conducted an intense spectroscopic monitoring of the He II
emission line across the 2014.6 periastron passage using ground- and
space-based telescopes. Comparison with previous data confirmed the overall
repeatability of EW(He II ), the line radial velocities, and the
timing of the minimum, though the strongest peak was systematically larger in
2014 than in 2009 by 26%. The EW(He II ) variations, combined
with other measurements, yield an orbital period d. The observed
variability of the EW(He II ) was reproduced by a model in which
the line flux primarily arises at the apex of the wind-wind collision and
scales inversely with the square of the stellar separation, if we account for
the excess emission as the companion star plunges into the hot inner layers of
the primary's atmosphere, and including absorption from the disturbed primary
wind between the source and the observer. This model constrains the orbital
inclination to -, and the longitude of periastron to
-. It also suggests that periastron passage occurred on
d. Our model also reproduced EW(He II )
variations from a polar view of the primary star as determined from the
observed He II emission scattered off the Homunculus nebula.Comment: The article contains 23 pages and 17 figures. It has been accepted
for publication in Ap
- …