28 research outputs found
Radar Interferometer for Topographic Mapping of Glaciers and Ice Sheets
A report discusses Ka-band (35-GHz) radar for mapping the surface topography of glaciers and ice sheets at high spatial resolution and high vertical accuracy, independent of cloud cover, with a swath-width of 70 km. The system is a single- pass, single-platform interferometric synthetic aperture radar (InSAR) with an 8-mm wavelength, which minimizes snow penetration while remaining relatively impervious to atmospheric attenuation. As exhibited by the lower frequency SRTM (Shuttle Radar Topography Mission) AirSAR and GeoSAR systems, an InSAR measures topography using two antennas separated by a baseline in the cross-track direction, to view the same region on the ground. The interferometric combination of data received allows the system to resolve the pathlength difference from the illuminated area to the antennas to a fraction of a wavelength. From the interferometric phase, the height of the target area can be estimated. This means an InSAR system is capable of providing not only the position of each image point in along-track and slant range as with a traditional SAR but also the height of that point through interferometry. Although the evolution of InSAR to a millimeter-wave center frequency maximizes the interferometric accuracy from a given baseline length, the high frequency also creates a fundamental problem of swath coverage versus signal-to-noise ratio. While the length of SAR antennas is typically fixed by mass and stowage or deployment constraints, the width is constrained by the desired illuminated swath width. As the across-track beam width which sets the swath size is proportional to the wavelength, a fixed swath size equates to a smaller antenna as the frequency is increased. This loss of antenna size reduces the two-way antenna gain to the second power, drastically reducing the signal-to-noise ratio of the SAR system. This fundamental constraint of high-frequency SAR systems is addressed by applying digital beam-forming (DBF) techniques to synthesize multiple simultaneous receive beams in elevation while maintaining a broad transmit illumination. Through this technique, a high antenna gain on receive is preserved, thereby reducing the required transmit power and thus enabling high-frequency SARs and high-precision InSAR from a single spacecraft
The TOPSAR interferometric radar topographic mapping instrument
The NASA DC-8 AIRSAR instrument was augmented with a pair of C-band antennas displaced across track to form an interferometer sensitive to topographic variations of the Earth's surface. The antennas were developed by the Italian consortium Co.Ri.S.T.A., under contract to the Italian Space Agency (ASI), while the AIRSAR instrument and modifications to it supporting TOPSAR were sponsored by NASA. A new data processor was developed at JPL for producing the topographic maps, and a second processor was developed at Co.Ri.S.T.A. All the results presented below were processed at JPL. During the 1991 DC-8 flight campaign, data were acquired over several sites in the United States and Europe, and topographic maps were produced from several of these flight lines. Analysis of the results indicate that statistical errors are in the 2-3 m range for flat terrain and in the 4-5 m range for mountainous areas
Current Status of the High-Efficiency L-band Transmit/Receive Module Development for SAR Systems
Large, lightweight, high power, L-band phased-arrays
are required to enable future NASA synthetic aperture
radar (SAR) missions. The transmit/receive (T/R) module is a
key component in SAR antennas and the T/R module efficiency
has direct implications on the power dissipation and power
generation requirements of the system. Significant
improvements in the efficiency of the T/R module will make
SAR missions more feasible and affordable. The efforts
described in this paper are part of a three-year on-going task sponsored by the NASA Earth Science Technology Office
(ESTO) under the Advanced Component Technology (ACT)
program. We will describe the current status and recent results of a novel T/R module technology to achieve ultra-high efficiencies. The T/R module performance goal is to achieve an overall module efficiency greater than 70% with a minimum of 30-Watts output power at L-band frequencies
Chimerism studies in HLA-identical nonmyeloablative hematopoietic stem cell transplantation point to the donor CD8+ T-cell count on day +14 as a predictor of acute graft-versus-host disease
AbstractChimerism analysis of hematopoietic cells has emerged as an essential tool in nonmyeloablative hematopoietic stem cell transplantation. We have investigated the development of donor chimerism in granulocytes and CD4+ and CD8+ T cells in blood and bone marrow of 24 patients with hematologic malignancies who received HLA-identical sibling peripheral blood stem cell grafts after conditioning with fludarabine and 2 Gy of total body irradiation. The T-cell chimerism of blood and bone marrow was tightly correlated. Complete donor chimerism was reached earlier in the granulocytes than in the T cells. Mixed T-cell chimerism was common at the time of onset of acute graft-versus-host disease (aGVHD), and both CD4+ and CD8+ donor T-cell chimerism increased with the occurrence of aGVHD grades II to IV (P = .0002 and P = .019, respectively). The rate of disappearance of recipient CD8+ T cells was faster in patients with aGVHD grades II to IV than in patients without clinically significant aGVHD (P = .016). This observation indicates a role of graft-versus-lymphohematopoietic tissue reactions in creating complete donor T-cell chimerism. A donor CD8+ T-cell count above the median on day +14 increased the risk of subsequent development of aGVHD grades II to IV (P = .003)
Long-term patient-important outcomes after septic shock : A protocol for 1-year follow-up of the CLASSIC trial
BackgroundIn patients with septic shock, mortality is high, and survivors experience long-term physical, mental and social impairments. The ongoing Conservative vs Liberal Approach to fluid therapy of Septic Shock in Intensive Care (CLASSIC) trial assesses the benefits and harms of a restrictive vs standard-care intravenous (IV) fluid therapy. The hypothesis is that IV fluid restriction improves patient-important long-term outcomes. AimTo assess the predefined patient-important long-term outcomes in patients randomised into the CLASSIC trial. MethodsIn this pre-planned follow-up study of the CLASSIC trial, we will assess all-cause mortality, health-related quality of life (HRQoL) and cognitive function 1 year after randomisation in the two intervention groups. The 1-year mortality will be collected from electronic patient records or central national registries in most participating countries. We will contact survivors and assess EuroQol 5-Dimension, -5-Level (EQ-5D-5L) and EuroQol-Visual Analogue Scale and Montreal Cognitive Assessment 5-minute protocol score. We will analyse mortality by logistic regression and use general linear models to assess HRQoL and cognitive function. DiscussionWith this pre-planned follow-up study of the CLASSIC trial, we will provide patient-important data on long-term survival, HRQoL and cognitive function of restrictive vs standard-care IV fluid therapy in patients with septic shock.Peer reviewe
The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description
On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds