15 research outputs found

    Caspase-2 is upregulated after sciatic nerve transection and its inhibition protects dorsal root ganglion neurons from Apoptosis after serum withdrawal

    Get PDF
    Sciatic nerve (SN) transection-induced apoptosis of dorsal root ganglion neurons (DRGN) is one factor determining the efficacy of peripheral axonal regeneration and the return of sensation. Here, we tested the hypothesis that caspase-2(CASP2) orchestrates apoptosis of axotomised DRGN both in vivo and in vitro by disrupting the local neurotrophic supply to DRGN. We observed significantly elevated levels of cleaved CASP2 (C-CASP2), compared to cleaved caspase-3 (C-CASP3), within TUNEL+DRGN and DRG glia (satellite and Schwann cells) after SN transection. A serum withdrawal cell culture model, which induced 40% apoptotic death in DRGN and 60% in glia, was used to model DRGN loss after neurotrophic factor withdrawal. Elevated C-CASP2 and TUNEL were observed in both DRGN and DRG glia, with C-CASP2 localisation shifting from the cytosol to the nucleus, a required step for induction of direct CASP2-mediated apoptosis. Furthermore, siRNAmediated downregulation of CASP2 protected 50% of DRGN from apoptosis after serum withdrawal, while downregulation of CASP3 had no effect on DRGN or DRG glia survival. We conclude that CASP2 orchestrates the death of SN-axotomised DRGN directly and also indirectly through loss of DRG glia and their local neurotrophic factor support. Accordingly, inhibiting CASP2 expression is a potential therapy for improving both the SN regeneration response and peripheral sensory recovery

    Gullo’s syndrome – case report

    No full text
    Benign pancreatic hyperenzymemia (BPH) or Gullo’s Syndrome is a persistent elevation of pancreatic enzymes activity, observed for at least one year, with no pancreatic disorder. This diagnosis is extremely important because it allows us to avoid many unnecessary examinations performed during the diagnostic process. We present a case of a 25-year-old man who was admitted for recurrent elevated lipase and amylase serum values over a time period of 2 years who presented with non-specific abdominal complaints. Interestingly, his routine tests showed sustained elevated serum amylase and lipase activity. He was intensively diagnosed due to pancreatic hyperenzymemia, but no pancreatic disease was detected. The observation lasted two years. The serum lipase and serum amylase levels continued to increase after that time. This diagnosis requires attention because BPH can be the first symptom of pancreatic cancer

    Fibroblast Growth Factor 21 Reduces the Severity of Cerulein-Induced Pancreatitis in Mice

    No full text
    BACKGROUND & AIMS: Fibroblast growth factor 21 (FGF21) acts as a hormonal regulator during fasting and is involved in lipid metabolism. Fgf21 gene expression is regulated by peroxisome proliferator-activated receptor (PPAR)-dependent pathways, which are enhanced during pancreatitis. Therefore, the aim of this study was to investigate FGF21\u27s role in pancreatic injury. METHODS: Fgf21 expression was quantified during cerulein-induced pancreatitis (CIP) or following mechanical or thapsigargin-induced stress through Northern blot analysis, in situ hybridization, and quantitative reverse transcription polymerase chain reaction. FGF21 protein was quantified by Western blot analysis. Isolated acinar cells or AR42J acinar cells were treated with recombinant FGF21 protein, and extracellular regulated kinase 1/2 activation was examined. The severity of CIP was compared between wild-type mice and mice overexpressing FGF21 (FGF21Tg) or harboring a targeted deletion of Fgf21 (Fgf21(-/-)). RESULTS: Acinar cell Fgf21 expression markedly increased during CIP and following injury in vitro. Purified FGF21 activated the extracellular regulated kinase 1/2 pathway in pancreatic acinar cells. The severity of CIP is inversely correlated to FGF21 expression because FGF21Tg mice exhibited decreased serum amylase and decreased pancreatic stellate cell activation, whereas Fgf21(-/-) mice had increased serum amylase and tissue damage. The expression of Fgf21 was also inversely correlated to expression of Early growth response 1, a proinflammatory and profibrotic transcription factor. CONCLUSIONS: These studies suggest a novel function for Fgf21 as an immediate response gene protecting pancreatic acini from overt damage
    corecore