33 research outputs found

    Increased pathogenicity of pneumococcal serotype 1 is driven by rapid autolysis and release of pneumolysin

    Get PDF
    Streptococcus pneumoniae serotype 1 is the predominant cause of invasive pneumococcal disease in sub-Saharan Africa, but the mechanism behind its increased invasiveness is not well understood. Here, we use mouse models of lung infection to identify virulence factors associated with severe bacteraemic pneumonia during serotype-1 (ST217) infection. We use BALB/c mice, which are highly resistant to pneumococcal pneumonia when infected with other serotypes. However, we observe 100% mortality and high levels of bacteraemia within 24 hours when BALB/c mice are intranasally infected with ST217. Serotype 1 produces large quantities of pneumolysin, which is rapidly released due to high levels of bacterial autolysis. This leads to substantial levels of cellular cytotoxicity and breakdown of tight junctions between cells, allowing a route for rapid bacterial dissemination from the respiratory tract into the blood. Thus, our results offer an explanation for the increased invasiveness of serotype 1

    Whole-genome sequencing illuminates the evolution and spread of multidrug-resistant tuberculosis in Southwest Nigeria.

    Get PDF
    Nigeria has an emerging problem with multidrug-resistant tuberculosis (MDR-TB). Whole-genome sequencing was used to understand the epidemiology of tuberculosis and genetics of multi-drug resistance among patients from two tertiary referral centers in Southwest Nigeria. In line with previous molecular epidemiology studies, most isolates of Mycobacterium tuberculosis from this dataset belonged to the Cameroon clade within the Euro-American lineage. Phylogenetic analysis showed this clade was undergoing clonal expansion in this region, and suggests that it was involved in community transmission of sensitive and multidrug-resistant tuberculosis. Five patients enrolled for retreatment were infected with pre-extensively drug resistant (pre-XDR) due to fluoroquinolone resistance in isolates from the Cameroon clade. In all five cases resistance was conferred through a mutation in the gyrA gene. In some patients, genomic changes occurred in bacterial isolates during the course of treatment that potentially led to decreased drug susceptibility. We conclude that inter-patient transmission of resistant isolates, principally from the Cameroon clade, contributes to the spread of MDR-TB in this setting, underscoring the urgent need to curb the spread of multi-drug resistance in this region

    Evolution of Mycobacterium tuberculosis complex lineages and their role in an emerging threat of multidrug resistant tuberculosis in Bamako, Mali

    Get PDF
    In recent years Bamako has been faced with an emerging threat from multidrug resistant TB (MDR-TB). Whole genome sequence analysis was performed on a subset of 76 isolates from a total of 208 isolates recovered from tuberculosis patients in Bamako, Mali between 2006 and 2012. Among the 76 patients, 61(80.3%) new cases and 15(19.7%) retreatment cases, 12 (16%) were infected by MDR-TB. The dominant lineage was the Euro-American lineage, Lineage 4. Within Lineage 4, the Cameroon genotype was the most prevalent genotype (n = 20, 26%), followed by the Ghana genotype (n = 16, 21%). A sub-clade of the Cameroon genotype, which emerged ~22 years ago was likely to be involved in community transmission. A sub-clade of the Ghana genotype that arose approximately 30 years ago was an important cause of MDR-TB in Bamako. The Ghana genotype isolates appeared more likely to be MDR than other genotypes after controlling for treatment history. We identified a clade of four related Beijing isolates that included one MDR-TB isolate. It is a major concern to find the Cameroon and Ghana genotypes involved in community transmission and MDR-TB respectively. The presence of the Beijing genotype in Bamako remains worrying, given its high transmissibility and virulence

    Declining Trends of Pneumococcal Meningitis in Gambian Children After the Introduction of Pneumococcal Conjugate Vaccines.

    Get PDF
    BACKGROUND: Acute bacterial meningitis remains a major cause of childhood mortality in sub-Saharan Africa. We document findings from hospital-based sentinel surveillance of bacterial meningitis among children <5 years of age in The Gambia, from 2010 to 2016. METHODS: Cerebrospinal fluid (CSF) was collected from children admitted to the Edward Francis Small Teaching Hospital with suspected meningitis. Identification of Streptococcus pneumoniae (pneumococcus), Neisseria meningitidis (meningococcus), and Haemophilus influenzae was performed by microbiological culture and/or polymerase chain reaction where possible. Whole genome sequencing was performed on pneumococcal isolates. RESULTS: A total of 438 children were admitted with suspected meningitis during the surveillance period. The median age of the patients was 13 (interquartile range, 3-30) months. Bacterial meningitis was confirmed in 21.4% (69/323) of all CSF samples analyzed. Pneumococcus, meningococcus, and H. influenzae accounted for 52.2%, 31.9%, and 16.0% of confirmed cases, respectively. There was a significant reduction of pneumococcal conjugate vaccine (PCV) serotypes, from 44.4% in 2011 to 0.0% in 2014, 5 years after PCV implementation. The majority of serotyped meningococcus and H. influenzae belonged to meningococcus serogroup W (45.5%) and H. influenzae type b (54.5%), respectively. Meningitis pathogens were more frequently isolated during the dry dusty season of the year. Reduced susceptibility to tetracycline, trimethoprim-sulfamethoxazole, and chloramphenicol was observed. No resistance to penicillin was found. CONCLUSIONS: The proportion of meningitis cases due to pneumococcus declined in the post-PCV era. However, the persistence of vaccine-preventable meningitis in children aged <5 years is a major concern and demonstrates the need for sustained high-quality surveillance

    Changes in the Molecular Epidemiology of Pediatric Bacterial Meningitis in Senegal After Pneumococcal Conjugate Vaccine Introduction.

    Get PDF
    BACKGROUND: Bacterial meningitis is a major cause of mortality among children under 5 years of age. Senegal is part of World Health Organization-coordinated sentinel site surveillance for pediatric bacterial meningitis surveillance. We conducted this analysis to describe the epidemiology and etiology of bacterial meningitis among children less than 5 years in Senegal from 2010 and to 2016. METHODS: Children who met the inclusion criteria for suspected meningitis at the Centre Hospitalier National d'Enfants Albert Royer, Senegal, from 2010 to 2016 were included. Cerebrospinal fluid specimens were collected from suspected cases examined by routine bacteriology and molecular assays. Serotyping, antimicrobial susceptibility testing, and whole-genome sequencing were performed. RESULTS: A total of 1013 children were admitted with suspected meningitis during the surveillance period. Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus accounted for 66% (76/115), 25% (29/115), and 9% (10/115) of all confirmed cases, respectively. Most of the suspected cases (63%; 639/1013) and laboratory-confirmed (57%; 66/115) cases occurred during the first year of life. Pneumococcal meningitis case fatality rate was 6-fold higher than that of meningococcal meningitis (28% vs 5%). The predominant pneumococcal lineage causing meningitis was sequence type 618 (n = 7), commonly found among serotype 1 isolates. An ST 2174 lineage that included serotypes 19A and 23F was resistant to trimethoprim-sulfamethoxazole. CONCLUSIONS: There has been a decline in pneumococcal meningitis post-pneumococcal conjugate vaccine introduction in Senegal. However, disease caused by pathogens covered by vaccines in widespread use still persists. There is need for continued effective monitoring of vaccine-preventable meningitis

    Hospital-based Surveillance Provides Insights Into the Etiology of Pediatric Bacterial Meningitis in Yaoundé, Cameroon, in the Post-Vaccine Era.

    Get PDF
    BACKGROUND:Meningitis is endemic to regions of Cameroon outside the meningitis belt including the capital city, Yaoundé. Through surveillance, we studied the etiology and molecular epidemiology of pediatric bacterial meningitis in Yaoundé from 2010 to 2016. METHODS:Lumbar puncture was performed on 5958 suspected meningitis cases; 765 specimens were further tested by culture, latex agglutination, and/or polymerase chain reaction (PCR). Serotyping/grouping, antimicrobial susceptibility testing, and/or whole genome sequencing were performed where applicable. RESULTS:The leading pathogens detected among the 126 confirmed cases were Streptococcus pneumoniae (93 [73.8%]), Haemophilus influenzae (18 [14.3%]), and Neisseria meningitidis (15 [11.9%]). We identified more vaccine serotypes (19 [61%]) than nonvaccine serotypes (12 [39%]); however, in the latter years non-pneumococcal conjugate vaccine serotypes were more common. Whole genome data on 29 S. pneumoniae isolates identified related strains (<30 single-nucleotide polymorphism difference). All but 1 of the genomes harbored a resistance genotype to at least 1 antibiotic, and vaccine serotypes harbored more resistance genes than nonvaccine serotypes (P < .05). Of 9 cases of H. influenzae, 8 were type b (Hib) and 1 was type f. However, the cases of Hib were either in unvaccinated individuals or children who had not yet received all 3 doses. We were unable to serogroup the N. meningitidis cases by PCR. CONCLUSIONS:Streptococcus pneumoniae remains a leading cause of pediatric bacterial meningitis, and nonvaccine serotypes may play a bigger role in disease etiology in the postvaccine era. There is evidence of Hib disease among children in Cameroon, which warrants further investigation

    Inferring bacterial transmission dynamics using deep sequencing genomic surveillance data

    Get PDF
    Within host variation is increasingly being cited as a tool to distinguish transmission pairs. However, the role of within-host diversity in transmission is understudied due to a lack of experimental and clinical datasets that capture within-host diversity in both donors and recipients. Here, we assess the utility of deep-sequenced genomic surveillance within a mouse transmission model where the gastrointestinal pathogen Citrobacter rodentium was controllably spread during co-housing of infected and naĂŻve animals. We observed that within 38 host variants were maintained over multiple transmission steps until fixation or elimination and present a model for inferring the likelihood that a given pair of samples are linked by transmission, by comparing the allelic frequency at variant genomic loci. Because within-host single nucleotide variants (iSNVs) can repeatedly pass from donor to recipient along the transmission chain, sharing of iSNVs offers limited discriminatory power in identifying a transmission pair. Beyond the presence and absence of within-host variants, we show that differences arising in the relative abundance of iSNVs (allelic frequency) can infer transmission pairs more precisely. However, in applying this method it is important to carefully consider routes of transmission, bottleneck sizes and mutation rates. Additionally, genomic artefacts must be carefully curated to avoid spurious inferences of transmission. An important component of our approach is that the inference is based solely on sequence data, without incorporating epidemiological or demographic data for context. Therefore, it can be adapted and used to complement existing epidemiologic tools

    Etiology of Pediatric Bacterial Meningitis Pre- and Post-PCV13 Introduction Among Children Under 5 Years Old in Lomé, Togo.

    Get PDF
    BACKGROUND: Pediatric bacterial meningitis (PBM) causes severe morbidity and mortality within Togo. Thus, as a member of the World Health Organization coordinated Invasive Bacterial Vaccine Preventable Diseases network, Togo conducts surveillance targeting Streptococcus pneumoniae (pneumococcus), Neisseria meningitidis (meningococcus), and Haemophilus influenzae, at a sentinel hospital within the capital city, Lomé, in the southernmost Maritime region. METHODS: Cerebrospinal fluid was collected from children <5 years with suspected PBM admitted to the Sylvanus Olympio Teaching Hospital. Phenotypic detection of pneumococcus, meningococcus, and H. influenzae was confirmed through microbiological techniques. Samples were shipped to the Regional Reference Laboratory to corroborate results by species-specific polymerase chain reaction. RESULTS: Overall, 3644 suspected PBM cases were reported, and 98 cases (2.7%: 98/3644) were confirmed bacterial meningitis. Pneumococcus was responsible for most infections (67.3%: 66/98), followed by H. influenzae (23.5%: 23/98) and meningococcus (9.2%: 9/98). The number of pneumococcal meningitis cases decreased by 88.1% (52/59) postvaccine introduction with 59 cases from July 2010 to June 2014 and 7 cases from July 2014 to June 2016. However, 5 cases caused by nonvaccine serotypes were observed. Fewer PBM cases caused by vaccine serotypes were observed in infants <1 year compared to children 2-5 years. CONCLUSIONS: Routine surveillance showed that PCV13 vaccination is effective in preventing pneumococcal meningitis among children <5 years of age in the Maritime region. This complements the MenAfriVac vaccination against meningococcal serogroup A to prevent meningitis outbreaks in the northern region of Togo. Continued surveillance is vital for estimating the prevalence of PBM, determining vaccine impact, and anticipating epidemics in Togo

    An outbreak of pneumococcal meningitis among older children (≥5 years) and adults after the implementation of an infant vaccination programme with the 13-valent pneumococcal conjugate vaccine in Ghana.

    Get PDF
    BACKGROUND: An outbreak of pneumococcal meningitis among non-infant children and adults occurred in the Brong-Ahafo region of Ghana between December 2015 and April 2016 despite the recent nationwide implementation of a vaccination programme for infants with the 13-valent pneumococcal conjugate vaccine (PCV13). METHODS: Cerebrospinal fluid (CSF) specimens were collected from patients with suspected meningitis in the Brong-Ahafo region. CSF specimens were subjected to Gram staining, culture and rapid antigen testing. Quantitative PCR was performed to identify pneumococcus, meningococcus and Haemophilus influenzae. Latex agglutination and molecular serotyping were performed on samples. Antibiogram and whole genome sequencing were performed on pneumococcal isolates. RESULTS: Eight hundred eighty six patients were reported with suspected meningitis in the Brong-Ahafo region during the period of the outbreak. In the epicenter district, the prevalence was as high as 363 suspected cases per 100,000 people. Over 95 % of suspected cases occurred in non-infant children and adults, with a median age of 20 years. Bacterial meningitis was confirmed in just under a quarter of CSF specimens tested. Pneumococcus, meningococcus and Group B Streptococcus accounted for 77 %, 22 % and 1 % of confirmed cases respectively. The vast majority of serotyped pneumococci (80 %) belonged to serotype 1. Most of the pneumococcal isolates tested were susceptible to a broad range of antibiotics, with the exception of two pneumococcal serotype 1 strains that were resistant to both penicillin and trimethoprim-sulfamethoxazole. All sequenced pneumococcal serotype 1 strains belong to Sequence Type (ST) 303 in the hypervirulent ST217 clonal complex. CONCLUSION: The occurrence of a pneumococcal serotype 1 meningitis outbreak three years after the introduction of PCV13 is alarming and calls for strengthening of meningitis surveillance and a re-evaluation of the current vaccination programme in high risk countries

    Carriage Dynamics of Pneumococcal Serotypes in Naturally Colonized Infants in a Rural African Setting During the First Year of Life.

    Get PDF
    Streptococcus pneumoniae (the pneumococcus) carriage precedes invasive disease and influences population-wide strain dynamics, but limited data exist on temporal carriage patterns of serotypes due to the prohibitive costs of longitudinal studies. Here, we report carriage prevalence, clearance and acquisition rates of pneumococcal serotypes sampled from newborn infants bi-weekly from weeks 1 to 27, and then bi-monthly from weeks 35 to 52 in the Gambia. We used sweep latex agglutination and whole genome sequencing to serotype the isolates. We show rapid pneumococcal acquisition with nearly 31% of the infants colonized by the end of first week after birth and quickly exceeding 95% after 2 months. Co-colonization with multiple serotypes was consistently observed in over 40% of the infants at each sampling point during the first year of life. Overall, the mean acquisition time and carriage duration regardless of serotype was 38 and 24 days, respectively, but varied considerably between serotypes comparable to observations from other regions. Our data will inform disease prevention and control measures including providing baseline data for parameterising infectious disease mathematical models including those assessing the impact of clinical interventions such as pneumococcal conjugate vaccines
    corecore