70 research outputs found

    Motion of falling object

    Full text link
    A simple setup was assembled to study the motion of an object while it falls. The setup was used to determine the instantaneous velocity, terminal velocity and acceleration due to gravity. Also, since the whole project was done within $20 it can easily be popularized.Comment: 11 pages, 4 figur

    Neuroprotective efficacy and therapeutic window of curcuma oil: in rat embolic stroke model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Among the naturally occurring compounds, turmeric from the dried rhizome of the plant <it>Curcuma longa </it>has long been used extensively as a condiment and a household remedy all over Southeast Asia. Turmeric contains essential oil, yellow pigments (curcuminoids), starch and oleoresin. The present study was designed for investigating the neuroprotective efficacy and the time window for effective therapeutic use of Curcuma oil (C. oil).</p> <p>Method</p> <p>In the present study, the effect of post ischemic treatment of C.oil after ischemia induced by occlusion of the middle cerebral artery in the rat was observed. C.oil (500 mg/kg body wt) was given 4 hrs post ischemia. The significant effect on lesion size as visualized by using diffusion-weighted magnetic resonance imaging and neuroscore was still evident when treatment was started 4 hours after insult. Animals were assessed for behavioral deficit scores after 5 and 24 hours of ischemia. Subsequently, the rats were sacrificed for evaluation of infarct and edema volumes and other parameters.</p> <p>Results</p> <p>C.oil ameliorated the ischemia induced neurological functional deficits and the infarct and edema volumes measured after 5 and 24 hrs of ischemia. After 24 hrs, immunohistochemical and Western blot analysis demonstrated that the expression of iNOS, cytochrome <it>c </it>and Bax/Bcl-2 were altered after the insult, and antagonized by treatment with C.oil. C.oil significantly reduced nitrosative stress, tended to correct the decreased mitochondrial membrane potential, and also affected caspase-3 activation finally apoptosis.</p> <p>Conclusion</p> <p>Here we demonstrated that iNOS-derived NO produced during ischemic injury was crucial for the up-regulation of ischemic injury targets. C.oil down-regulates these targets this coincided with an increased survival rate of neurons.</p

    Prostate-specific antigen bounce predicts for a favorable prognosis following brachytherapy: a meta-analysis.

    Get PDF
    PURPOSE: Controversy exists whether the prostate-specific antigen (PSA) bounce phenomenon following definitive radiation for prostate cancer has prognostic significance. Here, we perform a meta-analysis to determine the association between PSA bounce and biochemical control after brachytherapy alone. MATERIAL AND METHODS: We reviewed Medline, EMBASE, and CENTRAL citations through February 2012. Studies that recorded biochemical failure rates in bouncers and non-bouncers were included. Hazard ratios describing the impact of bounce on biochemical failure were extracted directly from the studies or calculated from survival curves. Pooled estimates were obtained using the inverse variance method. A random effects model was used in cases of significant effect heterogeneity (p \u3c 0.10 using Q test). RESULTS: The final analysis included 3011 patients over 6 studies treated with brachytherapy. Meta-analysis revealed that patients experiencing PSA bounce after brachytherapy, conferred a decreased risk of biochemical failure (random effects model HR = 0.42, 95% CI: 0.30-0.59; p \u3c 0.001). CONCLUSIONS: Our meta-analysis determined that PSA bounce predicts for improved biochemical control following brachytherapy. To our knowledge, this is the first study describing this effect

    The role of pre- and post-SRS systemic therapy in patients with NSCLC brain metastases

    Get PDF
    Purpose: We report our experience with stereotactic radiosurgery (SRS) for NSCLC brain metastases. We then assess the prognostic value of pre- and post-SRS systemic therapy (PrSST and PoSST) and evaluate the timing of PoSST.Methods: In this retrospective study, we analyzed 96 patients with lung cancer and ECOG PS ≤ 3 who underwent SRS during 2007-2013. Recorded factors included SRS treatment parameters, systemic status of disease (SDS) at time of SRS, and the use of PrSST and PoSST. SDS was designated as pulmonary disease or extrapulmonary disease. For analysis, the SRS-PoSST interval (SPI) was divided into ≤30 days and &gt;30 days. Univariate and multivariate analyses were performed.Results: 85 patients with NSCLC were included in this analysis. 48% received PrSST and 48% received PoSST. 57% of patients had pulmonary disease while 40% had extrapulmonary disease. 46% of patients had synchronous metastases. At a median follow-up of 6 months, the median survival was 6.4 months and the actuarial overall survival at 3, 6, 12, and 36 months was 80%, 52%, 31%, and 6%. Extrapulmonary disease (p = 0.008) negatively predicted for survival while the receipt of any systemic therapy (p = 0.050) or PoSST alone (p = 0.039) positively predicted for survival. In patients receiving PoSST, an SPI &gt;30 days positively predicted for survival (HR 0.28, 95% CI 0.13-0.62, p = 0.002) regardless of SDS.Conclusion: Our results indicate the prognostic importance of systemic therapy and specifically PoSST. Additionally, delaying the initiation of PoSST to &gt;30 days seems beneficial. This finding was potentially influenced by neurotoxicity after SRS. Further investigation is warranted to define the optimal SPI.</p

    The role of pre- and post-SRS systemic therapy in patients with NSCLC brain metastases

    Get PDF
    Purpose: We report our experience with stereotactic radiosurgery (SRS) for NSCLC brain metastases. We then assess the prognostic value of pre- and post-SRS systemic therapy (PrSST and PoSST) and evaluate the timing of PoSST.Methods: In this retrospective study, we analyzed 96 patients with lung cancer and ECOG PS ≤ 3 who underwent SRS during 2007-2013. Recorded factors included SRS treatment parameters, systemic status of disease (SDS) at time of SRS, and the use of PrSST and PoSST. SDS was designated as pulmonary disease or extrapulmonary disease. For analysis, the SRS-PoSST interval (SPI) was divided into ≤30 days and &gt;30 days. Univariate and multivariate analyses were performed.Results: 85 patients with NSCLC were included in this analysis. 48% received PrSST and 48% received PoSST. 57% of patients had pulmonary disease while 40% had extrapulmonary disease. 46% of patients had synchronous metastases. At a median follow-up of 6 months, the median survival was 6.4 months and the actuarial overall survival at 3, 6, 12, and 36 months was 80%, 52%, 31%, and 6%. Extrapulmonary disease (p = 0.008) negatively predicted for survival while the receipt of any systemic therapy (p = 0.050) or PoSST alone (p = 0.039) positively predicted for survival. In patients receiving PoSST, an SPI &gt;30 days positively predicted for survival (HR 0.28, 95% CI 0.13-0.62, p = 0.002) regardless of SDS.Conclusion: Our results indicate the prognostic importance of systemic therapy and specifically PoSST. Additionally, delaying the initiation of PoSST to &gt;30 days seems beneficial. This finding was potentially influenced by neurotoxicity after SRS. Further investigation is warranted to define the optimal SPI

    Phase IIb, Randomized, Double-Blind Trial of GC4419 Versus Placebo to Reduce Severe Oral Mucositis Due to Concurrent Radiotherapy and Cisplatin For Head and Neck Cancer

    Get PDF
    PURPOSE: Oral mucositis (OM) remains a common, debilitating toxicity of radiation therapy (RT) for head and neck cancer. The goal of this phase IIb, multi-institutional, randomized, double-blind trial was to compare the efficacy and safety of GC4419, a superoxide dismutase mimetic, with placebo to reduce the duration, incidence, and severity of severe OM (SOM). PATIENTS AND METHODS: A total of 223 patients (from 44 institutions) with locally advanced oral cavity or oropharynx cancer planned to be treated with definitive or postoperative intensity-modulated RT (IMRT; 60 to 72 Gy [≥ 50 Gy to two or more oral sites]) plus cisplatin (weekly or every 3 weeks) were randomly assigned to receive 30 mg (n = 73) or 90 mg (n = 76) of GC4419 or to receive placebo (n = 74) by 60-minute intravenous administration before each IMRT fraction. WHO grade of OM was assessed biweekly during IMRT and then weekly for up to 8 weeks after IMRT. The primary endpoint was duration of SOM tested for each active dose level versus placebo (intent-to-treat population, two-sided α of .05). The National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.03, was used for adverse event grading. RESULTS: Baseline patient and tumor characteristics as well as treatment delivery were balanced. With 90 mg GC4419 versus placebo, SOM duration was significantly reduced (P = .024; median, 1.5 v 19 days). SOM incidence (43% v 65%; P = .009) and severity (grade 4 incidence, 16% v 30%; P = .045) also were improved. Intermediate improvements were seen with the 30-mg dose. Safety was comparable across arms, with no significant GC4419-specific toxicity nor increase of known toxicities of IMRT plus cisplatin. The 2-year follow-up for tumor outcomes is ongoing. CONCLUSION: GC4419 at a dose of 90 mg produced a significant, clinically meaningful reduction of SOM duration, incidence, and severity with acceptable safety

    Association of Radiotherapy Duration With Clinical Outcomes in Patients With Esophageal Cancer Treated in NRG Oncology Trials: A Secondary Analysis of NRG Oncology Randomized Clinical Trials

    Get PDF
    IMPORTANCE: For many types of epithelial malignant neoplasms that are treated with definitive radiotherapy (RT), treatment prolongation and interruptions have an adverse effect on outcomes. OBJECTIVE: To analyze the association between RT duration and outcomes in patients with esophageal cancer who were treated with definitive chemoradiotherapy (CRT). DESIGN, SETTING, AND PARTICIPANTS: This study was an unplanned, post hoc secondary analysis of 3 prospective, multi-institutional phase 3 randomized clinical trials (Radiation Therapy Oncology Group [RTOG] 8501, RTOG 9405, and RTOG 0436) of the National Cancer Institute-sponsored NRG Oncology (formerly the National Surgical Adjuvant Breast and Bowel Project, RTOG, and Gynecologic Oncology Group). Enrolled patients with nonmetastatic esophageal cancer underwent definitive CRT in the trials between 1986 and 2013, with follow-up occurring through 2014. Data analyses were conducted between March 2022 to February 2023. EXPOSURES: Treatment groups in the trials used standard-dose RT (50 Gy) and concurrent chemotherapy. MAIN OUTCOMES AND MEASURES: The outcomes were local-regional failure (LRF), distant failure, disease-free survival (DFS), and overall survival (OS). Multivariable models were used to examine the associations between these outcomes and both RT duration and interruptions. Radiotherapy duration was analyzed as a dichotomized variable using an X-Tile software to choose a cut point and its median value as a cut point, as well as a continuous variable. RESULTS: The analysis included 509 patients (median [IQR] age, 64 [57-70] years; 418 males [82%]; and 376 White individuals [74%]). The median (IQR) follow-up was 4.01 (2.93-4.92) years for surviving patients. The median cut point of RT duration was 39 days or less in 271 patients (53%) vs more than 39 days in 238 patients (47%), and the X-Tile software cut point was 45 days or less in 446 patients (88%) vs more than 45 days in 63 patients (12%). Radiotherapy interruptions occurred in 207 patients (41%). Female (vs male) sex and other (vs White) race and ethnicity were associated with longer RT duration and RT interruptions. In the multivariable models, RT duration longer than 45 days was associated with inferior DFS (hazard ratio [HR], 1.34; 95% CI, 1.01-1.77; P = .04). The HR for OS was 1.33, but the results were not statistically significant (95% CI, 0.99-1.77; P = .05). Radiotherapy duration longer than 39 days (vs ≤39 days) was associated with a higher risk of LRF (HR, 1.32; 95% CI, 1.06-1.65; P = .01). As a continuous variable, RT duration (per 1 week increase) was associated with DFS failure (HR, 1.14; 95% CI, 1.01-1.28; P = .03). The HR for LRF 1.13, but the result was not statistically significant (95% CI, 0.99-1.28; P = .07). CONCLUSIONS AND RELEVANCE: Results of this study indicated that in patients with esophageal cancer receiving definitive CRT, prolonged RT duration was associated with inferior outcomes; female patients and those with other (vs White) race and ethnicity were more likely to have longer RT duration and experience RT interruptions. Radiotherapy interruptions should be minimized to optimize outcomes

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
    corecore