1,182 research outputs found
Pharmacologic IRE1/XBP1s Activation Confers Targeted ER Proteostasis Reprogramming
Activation of the IRE1/XBP1s signaling arm of the unfolded protein response (UPR) is a promising strategy to correct defects in endoplasmic reticulum (ER) proteostasis implicated in diverse diseases. However, no pharmacologic activators of this pathway identified to date are suitable for ER proteostasis remodeling through selective activation of IRE1/XBP1s signaling. Here, we use high-throughput screening to identify non-toxic compounds that induce ER proteostasis remodeling through IRE1/XBP1s activation. We employ transcriptional profiling to stringently confirm that our prioritized compounds selectively activate IRE1/XBP1s signaling without activating other cellular stress-responsive signaling pathways. Furthermore, we demonstrate that our compounds improve ER proteostasis of destabilized variants of amyloid precursor protein (APP) through an IRE1-dependent mechanism and reduce APP-associated mitochondrial toxicity in cellular models. These results establish highly selective IRE1/XBP1s activating compounds that can be widely employed to define the functional importance of IRE1/XBP1s activity for ER proteostasis regulation in the context of health and disease. [Figure not available: see fulltext.]
The Two Dimensional Kondo Model with Rashba Spin-Orbit Coupling
We investigate the effect that Rashba spin-orbit coupling has on the low
energy behaviour of a two dimensional magnetic impurity system. It is shown
that the Kondo effect, the screening of the magnetic impurity at temperatures T
< T_K, is robust against such spin-orbit coupling, despite the fact that the
spin of the conduction electrons is no longer a conserved quantity. A proposal
is made for how the spin-orbit coupling may change the value of the Kondo
temperature T_K in such systems and the prospects of measuring this change are
discussed. We conclude that many of the assumptions made in our analysis
invalidate our results as applied to recent experiments in semi-conductor
quantum dots but may apply to measurements made with magnetic atoms placed on
metallic surfaces.Comment: 22 pages, 1 figure; reference update
4 Gy versus 24 Gy radiotherapy for follicular and marginal zone lymphoma (FoRT): long-term follow-up of a multicentre, randomised, phase 3, non-inferiority trial
BACKGROUND: The optimal radiotherapy dose for indolent non-Hodgkin lymphoma is uncertain. We aimed to compare 24 Gy in 12 fractions (representing the standard of care) with 4 Gy in two fractions (low-dose radiation). METHODS: FoRT (Follicular Radiotherapy Trial) is a randomised, multicentre, phase 3, non-inferiority trial at 43 study centres in the UK. We enrolled patients (aged >18 years) with indolent non-Hodgkin lymphoma who had histological confirmation of follicular lymphoma or marginal zone lymphoma requiring radical or palliative radiotherapy. No limit on performance status was stipulated, and previous chemotherapy or radiotherapy to another site was permitted. Radiotherapy target sites were randomly allocated (1:1) either 24 Gy in 12 fractions or 4 Gy in two fractions using minimisation and stratified by histology, treatment intent, and study centre. Randomisation was centralised through the Cancer Research UK and University College London Cancer Trials Centre. Patients, treating clinicians, and investigators were not masked to random assignments. The primary endpoint was time to local progression in the irradiated volume based on clinical and radiological evaluation and analysed on an intention-to-treat basis. The non-inferiority threshold aimed to exclude the chance that 4 Gy was more than 10% inferior to 24 Gy in terms of local control at 2 years (HR 1·37). Safety (in terms of adverse events) was analysed in patients who received any radiotherapy and who returned an adverse event form. FoRT is registered with ClinicalTrials.gov, NCT00310167, and the ISRCTN Registry, ISRCTN65687530, and this report represents the long-term follow-up. FINDINGS: Between April 7, 2006, and June 8, 2011, 614 target sites in 548 patients were randomly assigned either 24 Gy in 12 fractions (n=299) or 4 Gy in two fractions (n=315). At a median follow-up of 73·8 months (IQR 61·9-88·0), 117 local progression events were recorded, 27 in the 24 Gy group and 90 in the 4 Gy group. The 2-year local progression-free rate was 94·1% (95% CI 90·6-96·4) after 24 Gy and 79·8% (74·8-83·9) after 4 Gy; corresponding rates at 5 years were 89·9% (85·5-93·1) after 24 Gy and 70·4% (64·7-75·4) after 4 Gy (hazard ratio 3·46, 95% CI 2·25-5·33; p<0·0001). The difference at 2 years remains outside the non-inferiority margin of 10% at -13·0% (95% CI -21·7 to -6·9). The most common events at week 12 were alopecia (19 [7%] of 287 sites with 24 Gy vs six [2%] of 301 sites with 4 Gy), dry mouth (11 [4%] vs five [2%]), fatigue (seven [2%] vs five [2%]), mucositis (seven [2%] vs three [1%]), and pain (seven [2%] vs two [1%]). No treatment-related deaths were reported. INTERPRETATION: Our findings at 5 years show that the optimal radiotherapy dose for indolent lymphoma is 24 Gy in 12 fractions when durable local control is the aim of treatment. FUNDING: Cancer Research UK
Kondo resonances and Fano antiresonances in transport through quantum dots
The transmission of electrons through a non-interacting tight-binding chain
with an interacting side quantum dot (QD) is analized. When the Kondo effect
develops at the dot the conductance presents a wide minimum, reaching zero at
the unitary limit. This result is compared to the opposite behaviour found in
an embedded QD. Application of a magnetic field destroys the Kondo effect and
the conductance shows pairs of dips separated by the charging energy U. The
results are discussed in terms of Fano antiresonances and explain qualitatively
recent experimental results.Comment: 4 pages including 4 figure
The Kondo Box: A Magnetic Impurity in an Ultrasmall Metallic Grain
We study the Kondo effect generated by a single magnetic impurity embedded in
an ultrasmall metallic grain, to be called a ``Kondo box''. We find that the
Kondo resonance is strongly affected when the mean level spacing in the grain
becomes larger than the Kondo temperature, in a way that depends on the parity
of the number of electrons on the grain. We show that the single-electron
tunneling conductance through such a grain features Kondo-induced Fano-type
resonances of measurable size, with an anomalous dependence on temperature and
level spacing.Comment: 4 Latex pages, 4 figures, submitted to Phys. Rev. Let
Noisy Kondo impurities
The anti-ferromagnetic coupling of a magnetic impurity carrying a spin with
the conduction electrons spins of a host metal is the basic mechanism
responsible for the increase of the resistance of an alloy such as
CuFe at low temperature, as originally suggested by
Kondo . This coupling has emerged as a very generic property of localized
electronic states coupled to a continuum . The possibility to design artificial
controllable magnetic impurities in nanoscopic conductors has opened a path to
study this many body phenomenon in unusual situations as compared to the
initial one and, in particular, in out of equilibrium situations. So far,
measurements have focused on the average current. Here, we report on
\textit{current fluctuations} (noise) measurements in artificial Kondo
impurities made in carbon nanotube devices. We find a striking enhancement of
the current noise within the Kondo resonance, in contradiction with simple
non-interacting theories. Our findings provide a test bench for one of the most
important many-body theories of condensed matter in out of equilibrium
situations and shed light on the noise properties of highly conductive
molecular devices.Comment: minor differences with published versio
Spintronic magnetic anisotropy
An attractive feature of magnetic adatoms and molecules for nanoscale
applications is their superparamagnetism, the preferred alignment of their spin
along an easy axis preventing undesired spin reversal. The underlying magnetic
anisotropy barrier --a quadrupolar energy splitting-- is internally generated
by spin-orbit interaction and can nowadays be probed by electronic transport.
Here we predict that in a much broader class of quantum-dot systems with spin
larger than one-half, superparamagnetism may arise without spin-orbit
interaction: by attaching ferromagnets a spintronic exchange field of
quadrupolar nature is generated locally. It can be observed in conductance
measurements and surprisingly leads to enhanced spin filtering even in a state
with zero average spin. Analogously to the spintronic dipolar exchange field,
responsible for a local spin torque, the effect is susceptible to electric
control and increases with tunnel coupling as well as with spin polarization.Comment: 6 pages with 4 figures + 26 pages of Supplementary Informatio
The Function of Cortactin in the Clustering of Acetylcholine Receptors at the Vertebrate Neuromuscular Junction
Background: Postsynaptic enrichment of acetylcholine receptors (AChRs) at the vertebrate neuromuscular junction (NMJ) depends on the activation of the muscle receptor tyrosine MuSK by neural agrin. Agrin-stimulation of MuSK is known to initiate an intracellular signaling cascade that leads to the clustering of AChRs in an actin polymerization-dependent manner, but the molecular steps which link MuSK activation to AChR aggregation remain incompletely defined. Methodology/Principal Findings: In this study we used biochemical, cell biological and molecular assays to investigate a possible role in AChR clustering of cortactin, a protein which is a tyrosine kinase substrate and a regulator of F-actin assembly and which has also been previously localized at AChR clustering sites. We report that cortactin was co-enriched at AChR clusters in situ with its target the Arp2/3 complex, which is a key stimulator of actin polymerization in cells. Cortactin was further preferentially tyrosine phosphorylated at AChR clustering sites and treatment of myotubes with agrin significantly enhanced the tyrosine phosphorylation of cortactin. Importantly, forced expression in myotubes of a tyrosine phosphorylation-defective cortactin mutant (but not wild-type cortactin) suppressed agrin-dependent AChR clustering, as did the reduction of endogenous cortactin levels using RNA interference, and introduction of the mutant cortactin into muscle cells potently inhibited synaptic AChR aggregation in response to innervation. Conclusion: Our results suggest a novel function of phosphorylation-dependent cortactin signaling downstream fro
Multiple agency perspective, family control, and private information abuse in an emerging economy
Using a comprehensive sample of listed companies in Hong Kong this paper investigates how family control affects private information abuses and firm performance in emerging economies. We combine research on stock market microstructure with more recent studies of multiple agency perspectives and argue that family ownership and control over the board increases the risk of private information abuse. This, in turn, has a negative impact on stock market performance. Family control is associated with an incentive to distort information disclosure to minority shareholders and obtain private benefits of control. However, the multiple agency roles of controlling families may have different governance properties in terms of investors’ perceptions of private information abuse. These findings contribute to our understanding of the conflicting evidence on the governance role of family control within a multiple agency perspectiv
- …