5 research outputs found

    Design, simulation and characterization of integrated photonic spectrographs for astronomy: generation-I AWG devices based on canonical layouts

    Get PDF
    We present an experimental study on our first generation of custom-developed arrayed waveguide gratings (AWG) on a silica platform for spectroscopic applications in near-infrared astronomy. We provide a comprehensive description of the design, numerical simulation and characterization of several AWG devices aimed at spectral resolving powers of 15,000-60,000 in the astronomical H-band. We evaluate the spectral characteristics of the fabricated devices in terms of insertion loss and estimated spectral resolving power and compare the results with numerical simulations. We estimate resolving powers of up to 18,900 from the output channel 3-dB transmission bandwidth. Based on the first characterization results, we select two candidate AWGs for further processing by removal of the output waveguide array and polishing the output facet to optical quality with the goal of integration as the primary diffractive element in a cross-dispersed spectrograph. We further study the imaging properties of the processed AWGs with regards to spectral resolution in direct imaging mode, geometry-related defocus aberration, and polarization sensitivity of the spectral image. We identify phase error control, birefringence control, and aberration suppression as the three key areas of future research and development in the field of high-resolution AWG-based spectroscopy in astronomy

    First stellar photons for an integrated optics discrete beam combiner at the William Herschel Telescope

    Get PDF
    We present the first on-sky results of a four-telescope integrated optics discrete beam combiner (DBC) tested at the 4.2 m William Herschel Telescope. The device consists of a four-input pupil remapper followed by a DBC and a 23-output reformatter. The whole device was written monolithically in a single alumino-borosilicate substrate using ultrafast laser inscription. The device was operated at astronomical H-band (1.6 µm), and a deformable mirror along with a microlens array was used to inject stellar photons into the device. We report the measured visibility amplitudes and closure phases obtained on Vega and Altair that are retrieved using the calibrated transfer matrix of the device. While the coherence function can be reconstructed, the on-sky results show significant dispersion from the expected values. Based on the analysis of comparable simulations, we find that such dispersion is largely caused by the limited signal-to-noise ratio of our observations. This constitutes a first step toward an improved validation of the DBC as a possible beam combination scheme for long-baseline interferometry

    First on-sky results with an interferometric discrete beam combiner (DBC) at the William Herschel Telescope

    No full text
    International audienceIn long-baseline interferometry, over the last few decades integrated optics beam combiners have become at- tractive technological solutions for new-generation instruments operating at infrared wavelengths. We have investigated different architectures of discrete beam combiners (DBC), which are 2D lattice arrangement of channel waveguides that can be fabricated by exploiting the 3D capability of the ultrafast laser inscription (ULI) fabrication techniques. Here, we present the first interferometric on-sky results of an integrated optics beam combiner based on a coherent pupil remapper and 4 input/23 output zig-zag based DBC, both written monolith- ically in a single borosilicate glass. We show the preliminary results of visibility amplitudes and closure phases obtained from the Vega star by using the previously calibrated transfer matrix of the device
    corecore