6,160 research outputs found

    Sonochemical Degradation of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Landfill Groundwater: Environmental Matrix Effects

    Get PDF
    Perfluorinated chemicals such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are environmentally persistent and recalcitrant to most conventional chemical and microbial treatment technologies. In this paper, we show that sonolysis is able to decompose PFOS and PFOA present in groundwater beneath a landfill. However, the pseudo first-order rate constant for the sonochemical degradation in the landfill groundwater is reduced by 61 and 56% relative to MilliQ water for PFOS and PFOA, respectively, primarily due to the presence of other organic constituents. In this study, we evaluate the effect of various organic compounds on the sonochemical decomposition rates of PFOS and PFOA. Organic components in environmental matrices may reduce the sonochemical degradation rates of PFOS and PFOA by competitive adsorption onto the bubble−water interface or by lowering the average interfacial temperatures during transient bubble collapse events. The effect of individual organic compounds depends on the Langmuir adsorption constant, the Henry’s law constant, the specific heat capacity, and the overall endothermic heat of dissociation. Volatile organic compounds (VOCs) are identified as the primary cause of the sonochemical rate reduction for PFOS and PFOA in landfill groundwater, whereas the effect of dissolved natural organic matter (DOM) is not significant. Finally, a combined process of ozonation and sonolysis is shown to substantially recover the rate loss for PFOS and PFOA in landfill groundwater

    Enhancement of perfluorooctanoate and perfluorooctanesulfonate activity at acoustic cavitation bubble interfaces

    Get PDF
    Acoustic cavitation driven by ultrasonic irradiation decomposes and mineralizes the recalcitrant perfluorinated surfactants perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Pyrolytic cleavage of the ionic headgroup is the rate-determining step. In this study, we examine the sonochemical adsorption of PFOX, where X = S for PFOS and A for PFOA, by determining kinetic order and absolute rates over an initial PFOX concentration range of 20 nM to 200 μM. Sonochemical PFOX kinetics transition from pseudo-first-order at low initial concentrations, [PFOX]_i 40 μM, as the bubble interface sites are saturated. At PFOX concentrations below 100 μM, concentration-dependent rates were modeled with Langmuir−Hinshelwood (LH) kinetics. Empirically determined rate maximums, V_(Max)^(−PFOA) = 2230 ± 560 nM min^−1 and V_(Max)^(−PFOS) = 230 ± 60 nM min^−1, were used in the LH model, and sonochemical surface activities were estimated to be K_(Sono)^(PFOS) = 120000 M^−1 and K_(Sono)^(PFOA) = 28500 M^−1, 60 and 80 times greater than equilibrium surface activities, K_(Eq)^(PFOS) and K_(Eq)^(PFOA). These results suggest enhanced sonochemical degradation rates for PFOX when the bubble interface is undersaturated. The present results are compared to previously reported sonochemical kinetics of nonvolatile surfactants

    Spectroscopy of mechanical dissipation in micro-mechanical membranes

    Get PDF
    We measure the frequency dependence of the mechanical quality factor (Q) of SiN membrane oscillators and observe a resonant variation of Q by more than two orders of magnitude. The frequency of the fundamental mechanical mode is tuned reversibly by up to 40% through local heating with a laser. Several distinct resonances in Q are observed that can be explained by coupling to membrane frame modes. Away from the resonances, the background Q is independent of frequency and temperature in the measured range.Comment: 4 pages, 5 figure

    Reductive defluorination of aqueous perfluorinated alkyl surfactants : effects of ionic headgroup and chain length

    Get PDF
    Perfluorinated chemicals (PFCs) are distributed throughout the environment. In the case of perfluorinated alkyl carboxylates and sulfonates, they can be classified as persistent organic pollutants since they are resistant to environmentally relevant reduction, oxidation, and hydrolytic processes. With this in mind, we report on the reductive defluorination of perfluorobutanoate, PFBA (C_3F_7CO_2−), perfluorohexanoate, PFHA (C_5F_(11)CO_2−), perfluorooctanoate, PFOA (C_7F_(15)CO_2−), perfluorobutane sulfonate, PFBS (C_4F_9SO_3−), perfluorohexane sulfonate, PFHS (C_6F_(13)SO_3−), and perfluorooctane sulfonate, PFOS (C_8F_(17)SO_3−) by aquated electrons, eaq−, that are generated from the UV photolysis (λ = 254 nm) of iodide. The ionic headgroup (-SO_3− vs -CO_2−) has a significant effect on the reduction kinetics and extent of defluorination (F index = −[F−]_(produced)/[PFC]_(degraded)). Perfluoroalkylsulfonate reduction kinetics and the F index increase linearly with increasing chain length. In contrast, perfluoroalkylcarboxylate chain length appears to have a negligible effect on the observed kinetics and the F index. H/F ratios in the gaseous fluoro-organic products are consistent with measured F indexes. Incomplete defluorination of the gaseous products suggests a reductive cleavage of the ionic headgroup occurs before complete defluorination. Detailed mechanisms involving initiation by aquated electrons are proposed

    Forschungsdaten-Dienste für die Max-Planck-Gesellschaft

    No full text
    Das Poster bietet einen Überblick über die Forschungsdaten-Dienste der Max Plank Digital Library (MPDL) als Serviceeinrichtung für die Max-Planck-Gesellschaft (MPG). Das Ziel ist eine effiziente Unterstützung der MPG-Wissenschaftler beim Management ihrer Forschungsdaten durch Beratung, Vernetzung und die Bereitstellung von Infrastruktur in Form von Serviceangeboten entlang der FAIR-Prinzipien

    USING NONLINEAR GROWTH CURVES TO ESTIMATE HEAT STRESS IN PROCESSING FEEDLOT CATTLE

    Get PDF
    Summertime heat waves cause excessive discomfort and, in extreme cases, death of feedlot cattle. During such emergencies, extension specialists are called upon for recommendations of management practices to minimize heat stress. Since moving cattle is believed to raise body temperature 1 degree, one recommendation is to move cattle before mid-day or reschedule to another day. More knowledge of body temperature dynamics could lead to more specific recommendations of how far cattle can be moved without stress. Several models are investigated - especially those involving exponential growth(challenge) and decay (recovery) such as the bi-exponential, single compartment and other models in pharmacokinetics. Data from feedlot trials can be messy and judgement calls involving starting and ending times, model parametrization, and statistical assumptions can influence the results. Analyzes from SAS: proc NLIN and checks on nonlinear assumptions are discussed

    Body Temperature in Free-Roaming Beef Cattle

    Get PDF
    Body temperature (BT) measurements are traditionally used in diagnosing sick animals, but may also be used as an indicator of stress or activity. Based on results of metabolism studies, Mader et al. (1999) reported that BT can vary as much as 0.9oC and can depend on metabolisable energy (ME) of the diet consumed. Acceptable measures of BT can be obtained from the rectum, vagina, or ear canal. Technologies are also being developed for continuously monitoring BT via radio-telemetry. The objectives of this study were to determine the effect of high concentrate (low fibre) versus high fibre diets on BT, assess the capabilities of obtaining BT in free-roaming cattle, and compare temperatures taken in the rumen with vaginal and tympanic temperatures

    Hydrodynamic lift of vesicles under shear flow in microgravity

    Full text link
    The dynamics of a vesicle suspension in a shear flow between parallel plates has been investigated under microgravity conditions, where vesicles are only submitted to hydrodynamic effects such as lift forces due to the presence of walls and drag forces. The temporal evolution of the spatial distribution of the vesicles has been recorded thanks to digital holographic microscopy, during parabolic flights and under normal gravity conditions. The collected data demonstrates that vesicles are pushed away from the walls with a lift velocity proportional to γ˙R3/z2\dot{\gamma} R^3/z^2 where γ˙\dot{\gamma} is the shear rate, RR the vesicle radius and zz its distance from the wall. This scaling as well as the dependence of the lift velocity upon vesicle aspect ratio are consistent with theoretical predictions by Olla [J. Phys. II France {\bf 7}, 1533--1540 (1997)].Comment: 6 pages, 8 figure
    • …
    corecore