15 research outputs found

    Accelerated hermeticity testing of biocompatible moisture barriers used for the encapsulation of implantable medical devices

    Get PDF
    Barrier layers for the long-term encapsulation of implantable medical devices play a crucial role in the devices’ performance and reliability. Typically, to understand the stability and predict the lifetime of barriers (therefore, the implantable devices), the device is subjected to accelerated testing at higher temperatures compared to its service parameters. Nevertheless, at high temperatures, reaction and degradation mechanisms might be different, resulting in false accelerated test results. In this study, the maximum valid temperatures for the accelerated testing of two barrier layers were investigated: atomic layer deposited (ALD) Al2O3 and stacked ALD HfO2/Al2O3/HfO2, hereinafter referred to as ALD-3. The in-house developed standard barrier performance test is based on continuous electrical resistance monitoring and microscopic inspection of Cu patterns covered with the barrier and immersed in phosphate buffered saline (PBS) at temperatures up to 95 °C. The results demonstrate the valid temperature window to perform temperature acceleration tests. In addition, the optimized ALD layer in combination with polyimide (polyimide/ALD-3/polyimide) works as effective barrier at 60 °C for 1215 days, suggesting the potential applicability to the encapsulation of long-term implants

    Ultra-long-term reliable encapsulation using an atomic layer deposited Hfo2/Al2o3/Hfo2 triple-interlayer for biomedical implants

    Get PDF
    Long-term packaging of miniaturized, flexible implantable medical devices is essential for the next generation of medical devices. Polymer materials that are biocompatible and flexible have attracted extensive interest for the packaging of implantable medical devices, however realizing these devices with long-term hermeticity up to several years remains a great challenge. Here, polyimide (PI) based hermetic encapsulation was greatly improved by atomic layer deposition (ALD) of a nanoscale-thin, biocompatible sandwich stack of HfO2/Al2O3/HfO2 (ALD-3) between two polyimide layers. A thin copper film covered with a PI/ALD-3/PI barrier maintained excellent electrochemical performance over 1028 days (2.8 years) during acceleration tests at 60 °C in phosphate buffered saline solution (PBS). This stability is equivalent to approximately 14 years at 37 °C. The coatings were monitored in situ through electrochemical impedance spectroscopy (EIS), were inspected by microscope, and were further analyzed using equivalent circuit modeling. The failure mode of ALD Al2O3, ALD-3, and PI soaking in PBS is discussed. Encapsulation using ultrathin ALD-3 combined with PI for the packaging of implantable medical devices is robust at the acceleration temperature condition for more than 2.8 years, showing that it has great potential as reliable packaging for long-term implantable devices

    Accelerated hermeticity testing of biocompatible moisture barriers used for encapsulation of implantable medical devices

    Get PDF
    Acceleration protocol plays an important role on barriers reliability evaluation for encapsulation of long-term implantable medical devices. Typically, acceleration is realized by performing tests at elevated temperature: the higher the selected temperature, the higher the acceleration factor. Nevertheless, at high temperatures, reaction mechanisms might be different, resulting in false acceleration test results. Our standard barrier performance test is based on the evaluation of corrosion of copper patterns (resistivity check, Electroscopic Impedance Spectroscopy (EIS), microscopic inspection). The temperature window for accelerated testing has been investigated for our standard barrier tests. The copper patterns, protected by a barrier layer under test, are immersed in PBS (Phosphate Buffered Saline) at temperatures up to 95°C. As barriers the following material/multilayers are selected: (1) Al2O3 ALD, (2) stacked HfO2/Al2O3/HfO2 ALD (further called ALD-3), (3) polyimide, and (4) polyimide/ALD-3/polyimide. In this presentation, the results of the test protocol evaluation will be presented. As expected, the maximum applicable test temperature is dependent on the barrier under test. Furthermore, during the fine-tuning of the accelerated test protocol, we observed for some barriers a clear influence of the shape of the Cu test patterns on the barrier performance. This can be related with processing effects when fabricating the barrier on the copper patterns. This finding stresses the determination of relevant copper patterns -or test structures in general- in order to predict the barrier performance correct for each individual application

    Shared SW development in multi-core automotive context

    No full text
    International audienceWe present a methodology for the common development of combustion engine control Software between TIER-1 supplier and OEM. The classical approach of shared development used in single core projects has to be adapted to the new challenges of integration and protection, in the multi-core context. New integration and protection constraints are specified at design time, which are considered at integration and protection time. A common integration step is defined, where interfaces and constraints at the border are agreed. After that, each part can be modified and protected independently, enabling parallel developments by the partners

    Development of an active high-density transverse intrafascicular micro-electrode probe

    No full text
    In this work, the development of an active high-density transverse intrafascicular microelectrode (hd-TIME) probe to interface with the peripheral nervous system is presented. The TIME approach is combined with an active probe chip, resulting in improved selectivity and excellent signal-to-noise ratio. The integrated multiplexing capabilities reduce the number of external electrical connections and facilitate the positioning of the probe during implantation, as the most interesting electrodes of the electrode array can be selected after implantation. The probe chip is packaged using thin-film manufacturing techniques to allow for a minimally invasive electronic package. Special attention is paid to the miniaturization, the mechanical flexibility and the hermetic encapsulation of the device. A customized probe chip was designed and packaged using a flexible, implantable thin electronic package (FITEP) process platform. The platform is specifically developed for making slim, ultra-compliant, implantable complementary metal-oxide-semiconductor based electronic devices. Multilayer stacks of polyimide films and HfO2/Al2O3/HfO2 layers deposited via atomic layer deposition act as bidirectional diffusion barriers and are key to the hermetic encapsulation. Their efficacy was demonstrated both by water vapor transmission rate tests and accelerated immersion tests in phosphate buffered saline at 60 °C. Using the hd-TIME probe, an innovative implantation method is developed to prevent the fascicles from moving away when the epineurium is pierced. In addition, by transversally implanting the hd-TIME probe in the proximal sciatic nerve of a rat, selective activation within the nerve was demonstrated. The FITEP process platform can be applied to a broader range of integrated circuits and can be considered as an enabler for other biomedical applications

    FITEP : a Flexible Implantable Thin Electronic Package platform for long term implantation applications, based on polymer and ceramic ALD multilayers

    No full text
    Within our internal FITEP technology platform (FITEP: Flexible Implantable Thin Electronic Package), a novel implantable packaging technology is under development in order to realize a very small, flexible, biomimetic package for electronic implants. This new platform enables a radical miniaturization of the final implanted device, which opens many new possibilities for the medical world, since it will be possible to insert electronic sensors in very small locations, such as arteries, nerves, glands,... The device encapsulation consists of a multilayer of biocompatible polymers and ultrathin ceramic diffusion barriers deposited using ALD techniques (ALD: atomic layer deposition) in order to fabricate a very thin and flexible but also highly hermetic device packaging. Concerning the selection of biocompatible polymers, polyimide can offer a profound mechanical support for the various device components, while Parylene with its excellent step coverage creates a highly conformal coating surrounding all components. Hermeticity can be realized by the use of ultrathin ceramic ALD layers such as Al2O3 and HfO2. An optimized ALD process will result in layers from very high quality with very good step coverage. As such, selected ALD layers of only a few tens of nm thick, can exhibit very low Water Vapor Transmission Rates (WVTR), making these ALD materials ideal as ultrathin diffusion barriers. The tested polyimide/ALD stack proved to be a very hermetic enclosure: copper patterns protected with the polyimide/ALD stack are still in perfect condition after more than 2 years of immersion in saline at 60 °C (test is still ongoing), while Cu patterns protected by the polyimide stack without ALD barriers showed first signs of damage already after 6 weeks exposure to saline. Platinum and gold are best suited for metallization of implanted electronics, but these noble metals do not adhere easily to polymers, hence dedicated measures to promote metal-polymer adhesion are essential. The FITEP platform is applied on a Si-probe for implantation in the peripheral nerves, consisting of a CMOS chip with recording and stimulation electrodes [Op de Beeck, M. 2017]. The chip is thinned down to 35um and packaged using polyimide and ALD multi-stacks, resulting in a 75um thin fully encapsulated chip, optimized to reduce the Foreign Body Reaction to obtain optimum electrode-nerve contact. Flexible interconnects are fabricated using gold and platinum sandwiched between polymers and ALD layers. For optimal charge injection, iridium oxide is used as electrode material. After this hermetic FITEP-based chip encapsulation, the CMOS chip is still fully functional, which was tested dry (in air) as well as during submersion in saline. First acute in vivo stimulation tests have shown good electrode stimulation capabilities. Mechanical bending tests on long 5um thick gold interconnects are performed, showing that even after up to 1.5 million bending cycles, no cracks occurred in the gold patterns (testing in air). Longer term immersion in saline and in-vivo testing showed some problems related to loss of adhesion and to galvanic effects of the metallization. These observations were leading to some improvements in the fabrication of the encapsulation. In a second packaging iteration of the CMOS chip, these improvements were realized and a new series of encapsulated devices is fabricated. First results are promising, showing improved metal adhesion. Longer term stability tests are on its way

    El aprendizaje autónomo de lenguas en tándem : principios, estrategias y experiencias de integración

    No full text
    Recopilación de artículos dirigidos a profesores de lenguas, asesores lingüísticos y a aquellos que deseen organizar y apoyar el aprendizaje autónomo de lenguas en tándem. Se recogen las principales claves teóricas de dicho modelo de aprendizaje, incluyendo consideraciones sobre los principios que lo rigen, las estrategias que le son de aplicación y la eficacia de su uso. Se proporcionan consejos prácticos que pueden servir de ayuda a los interesados en acercarse a las características de este método, ya sea desde una perspectiva investigadora o con el deseo de organizar experiencias de aprendizaje autónomo similares.AsturiasBiblioteca de Educación del Ministerio de Educación, Cultura y Deporte; Calle San Agustín 5 -3 Planta; 28014 Madrid; Tel. +34917748000; [email protected]
    corecore