138 research outputs found

    Thermal and Herbicide Tolerances of Chromerid Algae and Their Ability to Form a Symbiosis With Corals

    Get PDF
    Reef-building corals form an obligate symbiosis with photosynthetic microalgae in the family Symbiodiniaceae that meet most of their energy requirements. This symbiosis is under threat from the unprecedented rate of ocean warming as well as the simultaneous pressure of local stressors such as poor water quality. Only 1°C above mean summer sea surface temperatures (SSTs) on the Great Barrier Reef (GBR) can trigger the loss of Symbiodiniaceae from the host, and very low concentrations of the most common herbicide, diuron, can disrupt the photosynthetic activity of microalgae. In an era of rapid environmental change, investigation into the assisted evolution of the coral holobiont is underway in an effort to enhance the resilience of corals. Apicomplexan-like microalgae were discovered in 2008 and the Phylum Chromerida (chromerids) was created. Chromerids have been isolated from corals and contain a functional photosynthetic plastid. Their discovery therefore opens a new avenue of research into the use of alternative/additional photosymbionts of corals. However, only two studies to-date have investigated the symbiotic nature of Chromera velia with corals and thus little is known about the coral-chromerid relationship. Furthermore, the response of chromerids to environmental stressors has not been examined. Here we tested the performance of four chromerid strains and the common dinoflagellate symbiont Cladocopium goreaui (formerly Symbiodinium goreaui, ITS2 type C1) in response to elevated temperature, diuron and their combined exposure. Three of the four chromerid strains exhibited high thermal tolerances and two strains showed exceptional herbicide tolerances, greater than observed for any photosynthetic microalgae, including C. goreaui. We also investigated the onset of symbiosis between the chromerids and larvae of two common GBR coral species under ambient and stress conditions. Levels of colonization of coral larvae with the chromerid strains were low compared to colonization with C. goreaui. We did not observe any overall negative or positive larval fitness effects of the inoculation with chromerid algae vs. C. goreaui. However, we cannot exclude the possibility that chromerid algae may have more important roles in later coral life stages and recommend this be the focus of future studies

    Thermal and Herbicide Tolerances of Chromerid Algae and Their Ability to Form a Symbiosis With Corals

    Get PDF
    Reef-building corals form an obligate symbiosis with photosynthetic microalgae in the family Symbiodiniaceae that meet most of their energy requirements. This symbiosis is under threat from the unprecedented rate of ocean warming as well as the simultaneous pressure of local stressors such as poor water quality. Only 1°C above mean summer sea surface temperatures (SSTs) on the Great Barrier Reef (GBR) can trigger the loss of Symbiodiniaceae from the host, and very low concentrations of the most common herbicide, diuron, can disrupt the photosynthetic activity of microalgae. In an era of rapid environmental change, investigation into the assisted evolution of the coral holobiont is underway in an effort to enhance the resilience of corals. Apicomplexan-like microalgae were discovered in 2008 and the Phylum Chromerida (chromerids) was created. Chromerids have been isolated from corals and contain a functional photosynthetic plastid. Their discovery therefore opens a new avenue of research into the use of alternative/additional photosymbionts of corals. However, only two studies to-date have investigated the symbiotic nature of Chromera velia with corals and thus little is known about the coral-chromerid relationship. Furthermore, the response of chromerids to environmental stressors has not been examined. Here we tested the performance of four chromerid strains and the common dinoflagellate symbiont Cladocopium goreaui (formerly Symbiodinium goreaui, ITS2 type C1) in response to elevated temperature, diuron and their combined exposure. Three of the four chromerid strains exhibited high thermal tolerances and two strains showed exceptional herbicide tolerances, greater than observed for any photosynthetic microalgae, including C. goreaui. We also investigated the onset of symbiosis between the chromerids and larvae of two common GBR coral species under ambient and stress conditions. Levels of colonization of coral larvae with the chromerid strains were low compared to colonization with C. goreaui. We did not observe any overall negative or positive larval fitness effects of the inoculation with chromerid algae vs. C. goreaui. However, we cannot exclude the possibility that chromerid algae may have more important roles in later coral life stages and recommend this be the focus of future studies

    Estimating the Potential for Adaptation of Corals to Climate Warming

    Get PDF
    The persistence of tropical coral reefs is threatened by rapidly increasing climate warming, causing a functional breakdown of the obligate symbiosis between corals and their algal photosymbionts (Symbiodinium) through a process known as coral bleaching. Yet the potential of the coral-algal symbiosis to genetically adapt in an evolutionary sense to warming oceans is unknown. Using a quantitative genetics approach, we estimated the proportion of the variance in thermal tolerance traits that has a genetic basis (i.e. heritability) as a proxy for their adaptive potential in the widespread Indo-Pacific reef-building coral Acropora millepora. We chose two physiologically different populations that associate respectively with one thermo-tolerant (Symbiodinium clade D) and one less tolerant symbiont type (Symbiodinium C2). In both symbiont types, pulse amplitude modulated (PAM) fluorometry and high performance liquid chromatography (HPLC) analysis revealed significant heritabilities for traits related to both photosynthesis and photoprotective pigment profile. However, quantitative real-time polymerase chain reaction (qRT-PCR) assays showed a lack of heritability in both coral host populations for their own expression of fundamental stress genes. Coral colony growth, contributed to by both symbiotic partners, displayed heritability. High heritabilities for functional key traits of algal symbionts, along with their short clonal generation time and high population sizes allow for their rapid thermal adaptation. However, the low overall heritability of coral host traits, along with the corals' long generation time, raise concern about the timely adaptation of the coral-algal symbiosis in the face of continued rapid climate warming

    Temporal variation in the microbiome of Acropora coral species does not reflect seasonality

    Get PDF
    The coral microbiome is known to fluctuate in response to environmental variation and has been suggested to vary seasonally. However, most studies to date, particularly studies on bacterial communities, have examined temporal variation over a time frame of less than 1 year, which is insufficient to establish if microbiome variations are indeed seasonal in nature. The present study focused on expanding our understanding of long-term variability in microbial community composition using two common coral species, Acropora hyacinthus, and Acropora spathulata, at two mid-shelf reefs on the Great Barrier Reef. By sampling over a 2-year time period, this study aimed to determine whether temporal variations reflect seasonal cycles. Community composition of both bacteria and Symbiodiniaceae was characterized through 16S rRNA gene and ITS2 rDNA metabarcoding. We observed significant variations in community composition of both bacteria and Symbiodiniaceae among time points for A. hyacinthus and A. spathulata. However, there was no evidence to suggest that temporal variations were cyclical in nature and represented seasonal variation. Clear evidence for differences in the microbial communities found between reefs suggests that reef location and coral species play a larger role than season in driving microbial community composition in corals. In order to identify the basis of temporal patterns in coral microbial community composition, future studies should employ longer time series of sampling at sufficient temporal resolution to identify the environmental correlates of microbiome variation

    Die Agitpropbewegung als Teil der Arbeiterkultur der Weimarer Republik

    Get PDF
    The advent of next-generation sequencing has brought about an explosion of single nucleotide polymorphism (SNP) data in non-model organisms; however, profiling these SNPs across multiple natural populations still requires substantial time and resources. Results: Here, we introduce two cost-efficient quantitative High Resolution Melting (qHRM) methods for measuring allele frequencies at known SNP loci in pooled DNA samples: the "peaks" method, which can be applied to large numbers of SNPs, and the "curves" method, which is more labor intensive but also slightly more accurate. Using the reef-building coral Acropora millepora, we show that both qHRM methods can recover the allele proportions from mixtures prepared using two or more individuals of known genotype. We further demonstrate advantages of each method over previously published methods; specifically, the "peaks" method can be rapidly scaled to screen several hundred SNPs at once, whereas the "curves" method is better suited for smaller numbers of SNPs. Conclusions: Compared to genotyping individual samples, these methods can save considerable effort and genotyping costs when relatively few candidate SNPs must be profiled across a large number of populations. One of the main applications of this method could be validation of SNPs of interest identified in population genomic studies.Australian Institute of Marine ScienceNational Science Foundation DEB-1054766Cellular and Molecular Biolog

    Genetic Divergence across Habitats in the Widespread Coral Seriatopora hystrix and Its Associated Symbiodinium

    Get PDF
    Background: Coral reefs are hotspots of biodiversity, yet processes of diversification in these ecosystems are poorly understood. The environmental heterogeneity of coral reef environments could be an important contributor to diversification, however, evidence supporting ecological speciation in corals is sparse. Here, we present data from a widespread coral species that reveals a strong association of host and symbiont lineages with specific habitats, consistent with distinct, sympatric gene pools that are maintained through ecologically-based selection.\ud \ud Methodology/Principal Findings: Populations of a common brooding coral, Seriatopora hystrix, were sampled from three adjacent reef habitats (spanning a ~30 m depth range) at three locations on the Great Barrier Reef (n = 336). The populations were assessed for genetic structure using a combination of mitochondrial (putative control region) and nuclear (three microsatellites) markers for the coral host, and the ITS2 region of the ribosomal DNA for the algal symbionts (Symbiodinium). Our results show concordant genetic partitioning of both the coral host and its symbionts across the different habitats, independent of sampling location.\ud \ud Conclusions/Significance: This study demonstrates that coral populations and their associated symbionts can be highly structured across habitats on a single reef. Coral populations from adjacent habitats were found to be genetically isolated from each other, whereas genetic similarity was maintained across similar habitat types at different locations. The most parsimonious explanation for the observed genetic partitioning across habitats is that adaptation to the local environment has caused ecological divergence of distinct genetic groups within S. hystrix

    Some Rare Indo-Pacific Coral Species Are Probable Hybrids

    Get PDF
    Background: coral reefs worldwide face a variety of threats and many coral species are increasingly endangered. It is often assumed that rare coral species face higher risks of extinction because they have very small effective population sizes, a predicted consequence of which is decreased genetic diversity and adaptive potential.\ud \ud Methodology/Principal Findings: here we show that some Indo-Pacific members of the coral genus Acropora have very small global population sizes and are likely to be unidirectional hybrids. Whether this reflects hybrid origins or secondary hybridization following speciation is unclear.\ud \ud Conclusions/Significance: the interspecific gene flow demonstrated here implies increased genetic diversity and adaptive potential in these coral species. Rare Acropora species may therefore be less vulnerable to extinction than has often been assumed because of their propensity for hybridization and introgression, which may increase their adaptive potential

    New perspectives on realism, tractability, and complexity in economics

    Get PDF
    Fuzzy logic and genetic algorithms are used to rework more realistic (and more complex) models of competitive markets. The resulting equilibria are significantly different from the ones predicted from the usual static analysis; the methodology solves the Walrasian problem of how markets can reach equilibrium, starting with firms trading at disparate prices. The modified equilibria found in these complex market models involve some mutual self-restraint on the part of the agents involved, relative to economically rational behaviour. Research (using similar techniques) into the evolution of collaborative behaviours in economics, and of altruism generally, is summarized; and the joint significance of these two bodies of work for public policy is reviewed. The possible extension of the fuzzy/ genetic methodology to other technical aspects of economics (including international trade theory, and development) is also discussed, as are the limitations to the usefulness of any type of theory in political domains. For the latter purpose, a more differentiated concept of rationality, appropriate to ill-structured choices, is developed. The philosophical case for laissez-faire policies is considered briefly; and the prospects for change in the way we ‘do economics’ are analysed

    Niche specialization of reef-building corals in the mesophotic zone: metabolic trade-offs between divergent Symbiodinium types

    Get PDF
    The photobiology of two reef corals and the distribution of associated symbiont types were investigated over a depth gradient of 0–60 m at Scott Reef, Western Australia. Pachyseris speciosa hosted mainly the same Symbiodinium C type similar to C3 irrespective of sampling depth. By contrast, Seriatopora hystrix hosted predominantly Symbiodinium type D1a or D1a-like at shallow depths while those in deeper water were dominated by a Symbiodinium C type closely related to C1. The photosynthesis/respiration (P/R) ratio increased consistently with depth at the two sampling times (November 2008 and April 2009) for P. speciosa and in November 2008 only for S. hystrix, suggesting a reduction in metabolic energy expended for every unit of energy obtained from photosynthesis. However, in April 2009, shallow colonies of S. hystrix exhibited decreased P/R ratios down to depths of approximately 23 m, below which the ratio increased towards the maximum depth sampled. This pattern was mirrored by changes in tissue biomass determined as total protein content. The depth of change in the direction of the P/R ratio correlated with a shift from Symbiodinium D to C-dominated colonies. We conclude that while photobiological flexibility is vital for persistence in contrasting light regimes, a shift in Symbiodinium type may also confer a functional advantage albeit at a metabolic cost with increased depth

    Symbiodinium Genotypic and Environmental Controls on Lipids in Reef Building Corals

    Get PDF
    BACKGROUND: Lipids in reef building corals can be divided into two classes; non-polar storage lipids, e.g. wax esters and triglycerides, and polar structural lipids, e.g. phospholipids and cholesterol. Differences among algal endosymbiont types are known to have important influences on processes including growth and the photobiology of scleractinian corals yet very little is known about the role of symbiont types on lipid energy reserves. METHODOLOGY/PRINCIPAL FINDINGS: The ratio of storage lipid and structural lipid fractions of Scott Reef corals were determined by thin layer chromatography. The lipid fraction ratio varied with depth and depended on symbiont type harboured by two corals (Seriatopora hystrix and Pachyseris speciosa). S. hystrix colonies associated with Symbiodinium C1 or C1/C# at deep depths (>23 m) had lower lipid fraction ratios (i.e. approximately equal parts of storage and structural lipids) than those with Symbiodinium D1 in shallow depths (<23 m), which had higher lipid fraction ratios (i.e. approximately double amounts of storage relative to structural lipid). Further, there was a non-linear relationship between the lipid fraction ratio and depth for S. hystrix with a modal peak at ∼23 m coinciding with the same depth as the shift from clade D to C types. In contrast, the proportional relationship between the lipid fraction ratio and depth for P. speciosa, which exhibited high specificity for Symbiodinium C3 like across the depth gradient, was indicative of greater amounts of storage lipids contained in the deep colonies. CONCLUSIONS/SIGNIFICANCE: This study has demonstrated that Symbiodinium exert significant controls over the quality of coral energy reserves over a large-scale depth gradient. We conclude that the competitive advantages and metabolic costs that arise from flexible associations with divergent symbiont types are offset by energetic trade-offs for the coral host
    corecore