61 research outputs found

    Résistance des bactéries aux antibiotiques à noyau b-lactame (mécanismes et incidences)

    No full text
    BREST-BU Médecine-Odontologie (290192102) / SudocSudocFranceF

    Natural Co-Occurrence of Mycotoxins in Foods and Feeds and Their in vitro Combined Toxicological Effects

    No full text
    Some foods and feeds are often contaminated by numerous mycotoxins, but most studies have focused on the occurrence and toxicology of a single mycotoxin. Regulations throughout the world do not consider the combined effects of mycotoxins. However, several surveys have reported the natural co-occurrence of mycotoxins from all over the world. Most of the published data has concerned the major mycotoxins aflatoxins (AFs), ochratoxin A (OTA), zearalenone (ZEA), fumonisins (FUM) and trichothecenes (TCTs), especially deoxynivalenol (DON). Concerning cereals and derived cereal product samples, among the 127 mycotoxin combinations described in the literature, AFs+FUM, DON+ZEA, AFs+OTA, and FUM+ZEA are the most observed. However, only a few studies specified the number of co-occurring mycotoxins with the percentage of the co-contaminated samples, as well as the main combinations found. Studies of mycotoxin combination toxicity showed antagonist, additive or synergic effects depending on the tested species, cell model or mixture, and were not necessarily time- or dose-dependent. This review summarizes the findings on mycotoxins and their co-occurrence in various foods and feeds from all over the world as well as in vitro experimental data on their combined toxicity

    Proteomic signatures of the oyster metabolic response to herpesvirus OsHV-1 μVar infection

    No full text
    International audiencePacific oyster Crassostrea gigas were inoculated with OsHV-1 at low load (control) or high load (challenged) to better understand the pathogenesis of ostreid herpesvirus 1 (OsHV-1 mu Var) and to determine which metabolic pathways might be affected during infection. Animals were sampled for proteomic analysis two days post-injection, at the same time as OsHV-1 initiated an intense replication phase in challenged oysters. Twenty-five abundant protein spots that showed a marked change in accumulated levels were identified using a two-dimensional electrophoresis (2-DE) proteomic approach. Overall, these proteins are involved in cytoskeleton organization, protein turnover, induction of stress signals, signalling pathways and energy metabolism. Challenged oysters exhibited an increased glycolysis and VDAC accumulation, which reflect a “Warburg effect” as initially reported in cancer cells and more recently in shrimp infected with virus. The results presented here should be useful for identifying potential biomarkers of disease resistance and developing antiviral measures. (C) 2014 Elsevier B.V. All rights reserved

    Transcriptomic analysis of Ruditapes philippinarum hemocytes reveals cytoskeleton disruption after in vitro Vibrio tapetis challenge.

    No full text
    International audienceThe Manila clam, Ruditapes philippinarum, is an economically-important, commercial shellfish; harvests are diminished in some European waters by a pathogenic bacterium, Vibrio tapetis, that causes Brown Ring disease. To identify molecular characteristics associated with susceptibility or resistance to Brown Ring disease, Suppression Subtractive Hybridization (SSH) analyzes were performed to construct cDNA libraries enriched in up- or down-regulated transcripts from clam immune cells, hemocytes, after a 3-h in vitro challenge with cultured V. tapetis. Nine hundred and ninety eight sequences from the two libraries were sequenced, and an in silico analysis identified 235 unique genes. BLAST and "Gene ontology" classification analyzes revealed that 60.4% of the Expressed Sequence Tags (ESTs) have high similarities with genes involved in various physiological functions, such as immunity, apoptosis and cytoskeleton organization; whereas, 39.6% remain unidentified. From the 235 unique genes, we selected 22 candidates based upon physiological function and redundancy in the libraries. Then, Real-Time PCR analysis identified 3 genes related to cytoskeleton organization showing significant variation in expression attributable to V. tapetis exposure. Disruption in regulation of these genes is consistent with the etiologic agent of Brown Ring disease in Manila clams

    Dataset of differentially accumulated proteins in Mucor strains representative of four species grown on synthetic potato dextrose agar medium and a cheese mimicking medium

    No full text
    International audienceThe data presented are associated with the “Proteomic analysis of the adaptative response of Mucor spp. to cheese environment” (Morin-Sardin et al., 2016) article [1]. Mucor metabolism is poorly documented in the literature and while morphology and growth behavior suggest potential adaptation to cheese for some strains, no adaptation markers to cheese environment have been identified for this genus. To establish the possible existence of metabolic functions related to cheese adaptation, we used a gel based 2-DE proteomic approach coupled to LC–MS/MS to analyze three strains from species known or proposed to have a positive or negative role in cheese production as well as a strain from a non-related cheese-species

    Proteomic analysis of the adaptative response of Mucor spp. to cheese environment

    No full text
    International audienceIn the cheese industry context, Mucor species exhibit an ambivalent behavior as some species are essential “technological” organisms of some cheeses while others can be spoiling agents. Previously, we observed that cheese “technological” species exhibited higher optimal growth rates on cheese related matrices than on synthetic media. This growth pattern combined with morphological differences raise the question of their adaptation to cheese. In this study, using a comparative proteomic approach, we described the metabolic pathways of three Mucor strains considered as “technological” or “contaminant” in the cheese environment (M. lanceolatus UBOCC-A-109153, M. racemosus UBOCC-A-109155, M. circinelloides CBS 277-49) as well as a non-cheese related strain (M. endophyticus CBS 385-95). Overall, 15.8 to 19.0% of the proteomes showed a fold change ≥ 1.6 in Potato Dextrose Agar (PDA) versus Cheese Agar (CA), a cheese mimicking-medium. The 289 differentially expressed proteins identified by LC MS-MS analysis were mostly assigned to energy and amino-acid metabolisms in PDA whereas a higher diversity of biological processes was observed for cheese related strains in CA. Surprisingly, the vast majority (72.9%) of the over-accumulated proteins were different according to the considered medium and strain. These results strongly suggest that the observed better adaptative response of “technological” strains to cheese environment is mediated by species-specific proteins.ăBiological significanceăThe Mucor genus consists of a multitude of poorly known species. In the food context, few species are known for their positive role in the production of various food products, including cheese, while others are spoiling agents. The present study focused on the analysis of morphological and proteome differences of various Mucor spp. representative strains known as either positively (hereafter referred as “technological”) or negatively (hereafter referred as “contaminant”) associated with cheese or non-related to cheese (endophyte) on two different media, a synthetic medium and a cheese-mimicking medium. The main goal was to assess if adaptative traits of “technological” strains to the cheese environment could be identified. This work was based on observations we did in a recently published physiological study (Morin-Sardin et al., 2016). One of the important innovative aspects lies in the use for the first time of an extensive 2-DE approach to compare proteome variations for 4 strains on two different media. Results obtained offered an insight in the metabolic mechanisms associated with growth on a given medium and showed that adaptation to cheese environment is probably supported by species-specific proteins. The obtained data represent an essential step point for more targeted studies at the genomic and transcriptomic levels

    Surface properties associated with the production of polysaccharides in the food bacteria Propionibacterium freudenreichii

    No full text
    International audienceThis study explores the production of polysaccharides (PS) in the strain Pf2289 of the food species Propioni-bacterium freudenreichii. Pf2289 presents characteristics atypical of the species: a molar-shaped morphotype upon plating, and cells strongly aggregative in liquid medium. When plating Pf2289, another morphotype was observed with a 4% frequency of appearance: round-shaped colonies, typical of the species. A clone was isolated, designated Pf456. No reversibility of Pf456 towards the molar-shaped morphotype was observed. Pf2289 was shown to produce a surface polysaccharide (PS) bound to the cell wall, mainly during the stationary growth phase. Meanwhile, Pf456 had lost the ability to produce the PS. AFM images of Pf2289 showed that entangled filaments spread over the whole surface of the bacteria, whereas Pf456 exhibited a smooth surface. Adhesion force maps, performed with concanavalin-A grafted probes, revealed twice as much adhesion of Pf2289 to concanavalin-A compared to Pf456. Furthermore, the length of PS molecules surrounding Pf2289 measured at least 7 μm, whereas it only reached 1 μm in Pf456. Finally, the presence of PS had a strong impact on adhesion properties: Pf2289 did not adhere to hydrophobic surfaces, whereas Pf456 showed strong adhesion
    corecore