2,139 research outputs found
Thunderstorm/environment interactions that affect subsequent convection
Mesoscale kinematics and thermodynamics of severe thunderstorm-baroclinic zone interactions, and the development and evolution of mesoscale pressure systems associated with strong convective storms, are being studied in an ongoing research project
Interactions Between Convective Storms and Their Environment
The ways in which intense convective storms interact with their environment are considered for a number of specific severe storm situations. A physical model of subcloud wind fields and vertical wind profiles was developed to explain the often observed intensification of convective storms that move along or across thermal boundaries. A number of special, unusually dense, data sets were used to substantiate features of the model. GOES imagery was used in conjunction with objectively analyzed surface wind data to develop a nowcast technique that might be used to identify specific storm cells likely to become tornadic. It was shown that circulations associated with organized meso-alpha and meso-beta scale storm complexes may, on occasion, strongly modify tropospheric thermodynamic patterns and flow fields
The Ha Luminosity Function and Star Formation Rate at z\sim 0.2
We have measured the Ha+[N II] fluxes of the I-selected Canada-France
Redshift Survey (CFRS) galaxies lying at a redshift z below 0.3, and hence
derived the Ha luminosity function. The magnitude limits of the CFRS mean that
only the galaxies with M(B) > -21 mag were observed at these redshifts. We
obtained a total Ha luminosity density of at least 10^{39.44\pm 0.04}
erg/s/Mpc^{3} at a mean z=0.2 for galaxies with rest-fame EW(Ha+[N II]) > 10
Angs. This is twice the value found in the local universe by Gallego et al.
1995. Our Ha star formation rate, derived from Madau (1997) is higher than the
UV observations at same z, implying a UV dust extinction of about 1 mag. We
found a strong correlation between the Ha luminosity and the absolute magnitude
in the B-band: M(B(AB)) = 46.7 - 1.6 log L(Ha). This work will serve as a basis
of future studies of Ha luminosity distributions measured from
optically-selected spectroscopic surveys of the distant universe, and it will
provide a better understanding of the physical processes responsible for the
observed galaxy evolution.Comment: Accepted for publication in ApJ, 14 pages, LaTeX (macro aas2pp4.sty),
6 figure
A Study of Compact Radio Sources in Nearby Face-on Spiral Galaxies. II. Multiwavelength Analyses of Sources in M51
We report the analysis of deep radio observations of the interacting galaxy
system M51 from the Very Large Array, with the goal of understanding the nature
of the population of compact radio sources in nearby spiral galaxies. We detect
107 compact radio sources, 64% of which have optical counterparts in a deep
H Hubble Space Telescope image. Thirteen of the radio sources have
X-ray counterparts from a {\em Chandra} observation of M51. We find that six of
the associated H sources are young supernova remnants with resolved
shells. Most of the SNRs exhibit steep radio continuum spectral indices
onsistent with synchrotron emission. We detect emission from the Type Ic SN
1994I nearly a decade after explosion: the emission (Jy
beam at 20 cm, Jy beam at 6cm,
) is consistent with light curve models for Type Ib/Ic
supernovae. We detect X-ray emission from the supernova, however no optical
counterpart is present. We report on the analysis of the Seyfert 2 nucleus in
this galaxy, including the evidence for bipolar outflows from the central black
hole.Comment: 22 pages, 8 figures (5 color) in separate files, AASTeX. Full
resolution figures and preprint may be obtained by contacting
[email protected]. AJ accepte
Cassiopeia A: dust factory revealed via submillimetre polarimetry
If Type-II supernovae - the evolutionary end points of short-lived, massive
stars - produce a significant quantity of dust (>0.1 M_sun) then they can
explain the rest-frame far-infrared emission seen in galaxies and quasars in
the first Gyr of the Universe. Submillimetre observations of the Galactic
supernova remnant, Cas A, provided the first observational evidence for the
formation of significant quantities of dust in Type-II supernovae. In this
paper we present new data which show that the submm emission from Cas A is
polarised at a level significantly higher than that of its synchrotron
emission. The orientation is consistent with that of the magnetic field in Cas
A, implying that the polarised submm emission is associated with the remnant.
No known mechanism would vary the synchrotron polarisation in this way and so
we attribute the excess polarised submm flux to cold dust within the remnant,
providing fresh evidence that cosmic dust can form rapidly. This is supported
by the presence of both polarised and unpolarised dust emission in the north of
the remnant, where there is no contamination from foreground molecular clouds.
The inferred dust polarisation fraction is unprecedented (f_pol ~ 30%) which,
coupled with the brief timescale available for grain alignment (<300 yr),
suggests that supernova dust differs from that seen in other Galactic sources
(where f_pol=2-7%), or that a highly efficient grain alignment process must
operate in the environment of a supernova remnant.Comment: In press at MNRAS, 10 pages, print in colou
Expanded Sampling Across Ontogeny in <I>Deltasuchus motherali</I> (Neosuchia, Crocodyliformes)
A revised diagnosis of this species, describing the new material and discussing incidents of apparent ontogenetic variation across the sampled population. The results of the ensuing phylogenetic analyses both situate Deltasuchus within an endemic clade of Appalachian crocodyliforms, separate and diagnosable from goniopholidids and pholidosaurs. This title is also available as Open Access on Cambridge Core
Neutrino-Lasing in The Early Universe
Recently, Madsen has argued that relativistic decays of massive neutrinos
into lighter fermions and bosons may lead, via thermalization, to the formation
of a Bose condensate. If correct, this could generate mixed hot and cold dark
matter, with important consequences for structure formation.
From a detailed study of such decays, we arrive at substantially different
conclusions; for a wide range of masses and decay times, we find that
stimulated emission of bosons dominates the decay. This phenomenon can best be
described as a neutrino laser, pumped by the QCD phase transition. We discuss
the implications for structure formation and the dark-matter problem.Comment: 7 pages, 3 figures included as uuencoded file, CITA/93/
Impediments to mixing classical and quantum dynamics
The dynamics of systems composed of a classical sector plus a quantum sector
is studied. We show that, even in the simplest cases, (i) the existence of a
consistent canonical description for such mixed systems is incompatible with
very basic requirements related to the time evolution of the two sectors when
they are decoupled. (ii) The classical sector cannot inherit quantum
fluctuations from the quantum sector. And, (iii) a coupling among the two
sectors is incompatible with the requirement of physical positivity of the
theory, i.e., there would be positive observables with a non positive
expectation value.Comment: RevTex, 21 pages. Title slightly modified and summary section adde
Disorder Induced Diffusive Transport In Ratchets
The effects of quenched disorder on the overdamped motion of a driven
particle on a periodic, asymmetric potential is studied. While for the
unperturbed potential the transport is due to a regular drift, the quenched
disorder induces a significant additional chaotic ``diffusive'' motion. The
spatio-temporal evolution of the statistical ensemble is well described by a
Gaussian distribution, implying a chaotic transport in the presence of quenched
disorder.Comment: 10 pages, 4 EPS figures; submitted to Phys. Rev. Letter
- …