2,547 research outputs found
Tidal stability of giant molecular clouds in the Large Magellanic Cloud
Star formation does not occur until the onset of gravitational collapse
inside giant molecular clouds. However, the conditions that initiate cloud
collapse and regulate the star formation process remain poorly understood.
Local processes such as turbulence and magnetic fields can act to promote or
prevent collapse. On larger scales, the galactic potential can also influence
cloud stability and is traditionally assessed by the tidal and shear effects.
In this paper, we examine the stability of giant molecular clouds (GMCs) in the
Large Magellanic Cloud (LMC) against shear and the galactic tide using CO data
from the Magellanic Mopra Assessment (MAGMA) and rotation curve data from the
literature. We calculate the tidal acceleration experienced by individual GMCs
and determine the minimum cloud mass required for tidal stability. We also
calculate the shear parameter, which is a measure of a clouds susceptibility to
disruption via shearing forces in the galactic disk. We examine whether there
are correlations between the properties and star forming activity of GMCs and
their stability against shear and tidal disruption. We find that the GMCs are
in approximate tidal balance in the LMC, and that shear is unlikely to affect
their further evolution. GMCs with masses close to the minimal stable mass
against tidal disruption are not unusual in terms of their mass, location, or
CO brightness, but we note that GMCs with large velocity dispersion tend to be
more sensitive to tidal instability. We also note that GMCs with smaller radii,
which represent the majority of our sample, tend to more strongly resist tidal
and shear disruption. Our results demonstrate that star formation in the LMC is
not inhibited by to tidal or shear instability.Comment: 18 pages, 10 Figures, Accepted in PAS
Galactic Cannibalism: the Origin of the Magellanic Stream
We are in a privileged location in the Universe which allows us to observe
galactic interactions from close range -- the merger of our two nearest dwarf
satellite galaxies, the LMC and SMC. It is important to understand the local
merger process before we can have confidence in understanding mergers at high
redshift. We present high resolution Nbody+SPH simulations of the disruption of
the LMC and SMC and the formation of the Magellanic Stream, and discuss the
implications for galaxy formation and evolution.Comment: 2 pages, 1 figure, to appear in "The Evolution of Galaxies II: Basic
Building Blocks", (2002) ed. M. Sauvage et al. (Kluwer
The effect of a planet on the dust distribution in a 3D protoplanetary disk
Aims: We investigate the behaviour of dust in protoplanetary disks under the
action of gas drag in the presence of a planet. Our goal is twofold: to
determine the spatial distribution of dust depending on grain size and planet
mass, and therefore to provide a framework for interpretation of coming
observations and future studies of planetesimal growth. Method: We numerically
model the evolution of dust in a protoplanetary disk using a two-fluid (gas +
dust) Smoothed Particle Hydrodynamics (SPH) code, which is non-self-gravitating
and locally isothermal. The code follows the three dimensional distribution of
dust in a protoplanetary disk as it interacts with the gas via aerodynamic
drag. In this work, we present the evolution of a minimum mass solar nebula
(MMSN) disk comprising 1% dust by mass in the presence of an embedded planet.
We run a series of simulations which vary the grain size and planetary mass to
see how they affect the resulting disk structure. Results: We find that gap
formation is much more rapid and striking in the dust layer than in the gaseous
disk and that a system with a given stellar, disk and planetary mass will have
a completely different appearance depending on the grain size. For low mass
planets in our MMSN disk, a gap can open in the dust disk while not in the gas
disk. We also note that dust accumulates at the external edge of the planetary
gap and speculate that the presence of a planet in the disk may enhance the
formation of a second planet by facilitating the growth of planetesimals in
this high density region.Comment: 13 pages, 12 figures. Accepted for publication in Astronomy &
Astrophysic
The accumulation and trapping of grains at planet gaps: effects of grain growth and fragmentation
We model the dust evolution in protoplanetary disks with full 3D, Smoothed
Particle Hydrodynamics (SPH), two-phase (gas+dust) hydrodynamical simulations.
The gas+dust dynamics, where aerodynamic drag leads to the vertical settling
and radial migration of grains, is consistently treated. In a previous work, we
characterized the spatial distribution of non-growing dust grains of different
sizes in a disk containing a gap-opening planet and investigated the gap's
detectability with the Atacama Large Millimeter/submillimeter Array (ALMA).
Here we take into account the effects of grain growth and fragmentation and
study their impact on the distribution of solids in the disk. We show that
rapid grain growth in the two accumulation zones around planet gaps is strongly
affected by fragmentation. We discuss the consequences for ALMA observations.Comment: Accepted for publication in Planetary and Space Science. 13 pages, 4
figure
SPH simulations of accretion disks and narrow rings
We model a massless viscous disk using Smoothed Particle Hydrodynamics (SPH) and note that it evolves according to the Lynden-Bell \& Pringle theory (1974) until a non-axisymmetric instability develops at the inner edge of the disk. This instability may have the same origin as the instability of initially axisymmetric viscous disks discussed by Lyubarskij et al. (1994). To clarify the evolution we evolved single and double rings of particles. It is actually inconsistent with the SPH scheme to set up a single ring as an initial condition because SPH assumes a smoothed initial state. As would be expected from an SPH simulation, the ring rapidly breaks up into a band. We analyse the stability of the ring and show that the predictions are confirmed by the simulation
The accumulation and trapping of grains at planet gaps: effects of grain growth and fragmentation
13 pages, 4 figures.International audienceWe model the dust evolution in protoplanetary disks with full 3D, Smoothed Particle Hydrodynamics (SPH), two-phase (gas+dust) hydrodynamical simulations. The gas+dust dynamics, where aerodynamic drag leads to the vertical settling and radial migration of grains, is consistently treated. In a previous work, we characterized the spatial distribution of non-growing dust grains of different sizes in a disk containing a gap-opening planet and investigated the gap's detectability with the Atacama Large Millimeter/submillimeter Array (ALMA). Here we take into account the effects of grain growth and fragmentation and study their impact on the distribution of solids in the disk. We show that rapid grain growth in the two accumulation zones around planet gaps is strongly affected by fragmentation. We discuss the consequences for ALMA observations
New constraints on the millimetre emission of six debris discs
The presence of dusty debris around main-sequence stars denotes the existence of planetary systems. Such debris discs are often identified by the presence of excess continuum emission at infrared and (sub-)millimetre wavelengths, with measurements at longer wavelengths tracing larger and cooler dust grains. The exponent of the slope of the disc emission at submillimetre wavelengths, ‘q’, defines the size distribution of dust grains in the disc. This size distribution is a function of the rigid strength of the dust producing parent planetesimals. As a part of the survey ‘PLAnetesimals around TYpical Pre-main seqUence Stars’, we observed six debris discs at 9 mm using the Australian Telescope Compact Array. We obtain marginal (∼3σ) detections of three targets: HD 105, HD 61005 and HD 131835. Upper limits for the three remaining discs, HD 20807, HD 109573 and HD 109085 provide further constraint of the (sub-)millimetre slope of their spectral energy distributions. The values of q (or their limits) derived from our observations are all smaller than the oft-assumed steady-state collisional cascade model (q = 3.5), but lie well within the theoretically expected range for debris discs q ∼ 3–4. The measured q values for our targets are all <3.3, consistent with both collisional modelling results and theoretical predictions for parent planetesimal bodies being ‘rubble piles’ held together loosely by their self-gravity
- …