113 research outputs found

    Effect of body posture on pharyngeal shape and size in adults with and without obstructive sleep apnea

    No full text
    Study Objectives: In patients with obstructive sleep apnea (OSA), the severity and frequency of respiratory events is increased in the supine body posture compared with the lateral recumbent posture. The mechanism responsible is not clear but may relate to the effect of posture on upper airway shape and size. This study compared the effect of body posture on upper airway shape and size in individuals with OSA with control subjects matched for age, BMI, and gender. Participants: 11 males with OSA and 11 age- and BMI-matched male control subjects. Results: Anatomical optical coherence tomography was used to scan the upper airway of all subjects while awake and breathing quietly, initially when supine, and then in the lateral recumbent posture. A standard head, neck, and tongue position was maintained during scanning. Airway cross-sectional area (CSA) and anteroposterior (A-P) and lateral diameters were obtained in the oropharyngeal and velopharyngeal regions in both postures. A-P to lateral diameter ratios provided an index of regional airway shape. In equivalent postures, the ratio of A-P to lateral diameter in the velopharynx was similar in OSA and control subjects. In both groups, this ratio was significantly less for the supine than for the lateral recumbent posture. CSA was smaller in OSA subjects than in controls but was unaffected by posture. Conclusions: The upper airway changes from a more transversely oriented elliptical shape when supine to a more circular shape when in the lateral recumbent posture but without altering CSA. Increased circularity decreases propensity to tube collapse and may account for the postural dependency of OSA

    Effect of body posture on pharyngeal shape and size in adults with and without obstructive sleep apnea

    No full text
    Study Objectives: In patients with obstructive sleep apnea (OSA), the severity and frequency of respiratory events is increased in the supine body posture compared with the lateral recumbent posture. The mechanism responsible is not clear but may relate to the effect of posture on upper airway shape and size. This study compared the effect of body posture on upper airway shape and size in individuals with OSA with control subjects matched for age, BMI, and gender. Participants: 11 males with OSA and 11 age- and BMI-matched male control subjects. Results: Anatomical optical coherence tomography was used to scan the upper airway of all subjects while awake and breathing quietly, initially when supine, and then in the lateral recumbent posture. A standard head, neck, and tongue position was maintained during scanning. Airway cross-sectional area (CSA) and anteroposterior (A-P) and lateral diameters were obtained in the oropharyngeal and velopharyngeal regions in both postures. A-P to lateral diameter ratios provided an index of regional airway shape. In equivalent postures, the ratio of A-P to lateral diameter in the velopharynx was similar in OSA and control subjects. In both groups, this ratio was significantly less for the supine than for the lateral recumbent posture. CSA was smaller in OSA subjects than in controls but was unaffected by posture. Conclusions: The upper airway changes from a more transversely oriented elliptical shape when supine to a more circular shape when in the lateral recumbent posture but without altering CSA. Increased circularity decreases propensity to tube collapse and may account for the postural dependency of OSA

    Evaluation of pharyngeal shape and size using anatomical optical coherence tomography in individuals with and without obstructive sleep apnoea

    No full text
    This study compared shape, size and length of the pharyngeal airway in individuals with and without obstructive sleep apnoea (OSA) using a novel endoscopic imaging technique, anatomical optical coherence tomography (aOCT). The study population comprised a preliminary study group of 20 OSA patients and a subsequent controlled study group of 10 OSA patients and 10 body mass index (BMI)-, gender- and age-matched control subjects without OSA. All subjects were scanned using aOCT while awake, supine and breathing quietly. Measurements of airway cross-sectional area (CSA) and anteroposterior (A-P) and lateral diameters were obtained from the hypo-, oro- and velopharyngeal regions. A-P : lateral diameter ratios were calculated to provide an index of regional airway shape. In all subjects, pharyngeal CSA was lowest in the velopharynx. Patients with OSA had a smaller velopharyngeal CSA than controls (maximum CSA 91 ± 40 versus 153 ± 84 mm2; P < 0.05) but comparable oro- (318 ± 80 versus 279 ± 129 mm2; P = 0.48) and hypopharyngeal CSA (250 ± 105 versus 303 ± 112 mm2; P = 0.36). In each pharyngeal region, the long axis of the airway was oriented in the lateral diameter. Airway shape was not different between the groups. Pharyngeal airway length was similar in both groups, although the OSA group had longer uvulae than the control group (16.8 ± 6.2 versus 11.2 ± 5.2 mm; P < 0.05). This study has shown that individuals with OSA have a smaller velopharyngeal CSA than BMI-, gender- and age-matched control volunteers, but comparable shape: a laterally oriented ellipse. These findings suggest that it is an abnormality in size rather than shape that is the more important anatomical predictor of OSA

    Feasibility of applying real-time optical imaging during bronchoscopic interventions for central airway obstruction

    No full text
    Interventional bronchoscopists manage central airway obstruction (CAO) through dilation, tumor ablation, and/or stent insertion. Anatomical optical coherence tomography (aOCT), a validated light-based imaging technique, has the unique capacity of providing bronchoscopists with intraprocedural central airway measurements. This study aims to describe the potential role of real-time aOCT in guiding interventions during CAO procedures. Methods: Prospective case series were recruited from patients referred for bronchoscopic management of symptomatic CAO. Preprocedure chest computed tomography (CT) scans were analyzed for relevant airway dimensions, such as stenosis caliber and length, and aided procedure planning. During bronchoscopy, an aOCT fiberoptic probe was inserted through the working channel of the bronchoscope to image the airway stenosis. From these aOCT images, stenosis dimensions were measured and compared with the preprocedure CT measurements. Preprocedure and postprocedure spirometry, Medical Research Council dyspnea score, and Eastern Cooperative Oncology Group performance status were collected to assess intervention efficacy. Results: Fourteen patients were studied. CT and aOCT-based measurements of airway caliber and length correlated closely (r2=0.87, P<0.001). Bland-Altman analysis showed strong agreement between measurements (mean difference 0.4±8.6 mm). The real-time nature of aOCT imaging provided the advantage of more up-to-date measurements where a delay occurred between CT and bronchoscopy or where the quality of the CT image was suboptimal. After bronchoscopy, the predicted forced expiratory flow in 1 second increased from 67±26% to 78±19% (P=0.04). Eastern Cooperative Oncology Group and dyspnea scores improved in 83% and 75% of the patients, respectively. Conclusions: aOCT provides real-time measurements of obstructing central airway lesions that can assist therapeutic interventions such as selection of endobronchial stents and airway dilatation procedures. Copyrigh
    corecore