2,368 research outputs found
Relationships Between Atomic Diffusion Mechanisms and Ensemble Transport Coefficients in Crystalline Polymorphs
Ionic transport in conventional ionic solids is generally considered to
proceed via independent diffusion events or "hops''. This assumption leads to
well-known Arrhenius expressions for transport coefficients, and is equivalent
to assuming diffusion is a Poisson process. Using molecular dynamics
simulations of the low-temperature B1, B3, and B4 AgI polymorphs, we have
compared rates of ion-hopping with corresponding Poisson distributions to test
the assumption of independent hopping in these common structure-types. In all
cases diffusion is a non-Poisson process, and hopping is strongly correlated in
time. In B1 the diffusion coefficient can be approximated by an Arrhenius
expression, though the physical significance of the parameters differs from
that commonly assumed. In low temperature B3 and B4 diffusion is characterised
by concerted motion of multiple ions in short closed loops. Diffusion
coefficients can not be expressed in a simple Arrhenius form dependent on
single-ion free-energies, and intrinsic diffusion must be considered a
many-body process
Molecular Dynamics Simulation of Coherent Interfaces in Fluorite Heterostructures
The standard model of enhanced ionic conductivities in solid electrolyte
heterostructures follows from a continuum mean-field description of defect
distributions that makes no reference to crystalline structure. To examine
ionic transport and defect distributions while explicitly accounting for
ion-ion correlations and lattice effects, we have performed molecular dynamics
simulations of a model coherent fluorite heterostructure without any extrinsic
defects, with a difference in standard chemical potentials of mobile fluoride
ions between phases induced by an external potential. Increasing the offset in
fluoride ion standard chemical potentials across the internal interfaces
decreases the activation energies for ionic conductivity and diffusion and
strongly enhances fluoride ion mobilities and defect concentrations near the
heterostructure interfaces. Non-charge-neutral "space-charge" regions, however,
extend only a few atomic spacings from the interface, suggesting a continuum
model may be inappropriate. Defect distributions are qualitatively inconsistent
with the predictions of the continuum mean-field model, and indicate strong
lattice-mediated defect-defect interactions. We identify an atomic-scale
"Frenkel polarisation" mechanism for the interfacial enhancement in ionic
mobility, where preferentially oriented associated Frenkel pairs form at the
interface and promote local ion mobility via concerted diffusion processes
Computer simulations of ionic liquids at electrochemical interfaces
Ionic liquids are widely used as electrolytes in electrochemical devices. In
this context, many experimental and theoretical approaches have been recently
developed for characterizing their interface with electrodes. In this
perspective article, we review the most recent advances in the field of
computer simulations (mainly molecular dynamics). A methodology for simulating
electrodes at constant electrical potential is presented. Several types of
electrode geometries have been investigated by many groups in order to model
planar, corrugated and porous materials and we summarize the results obtained
in terms of the structure of the liquids. This structure governs the quantity
of charge which can be stored at the surface of the electrode for a given
applied potential, which is the relevant quantity for the highly topical use of
ionic liquids in supercapacitors (also known as electrochemical double-layer
capacitors). A key feature, which was also shown by atomic force microscopy and
surface force apparatus experiments, is the formation of a layered structure
for all ionic liquids at the surface of planar electrodes. This organization
cannot take place inside nanoporous electrodes, which results in a much better
performance for the latter in supercapacitors. The agreement between
simulations and electrochemical experiments remains qualitative only though,
and we outline future directions which should enhance the predictive power of
computer simulations. In the longer term, atomistic simulations will also be
applied to the case of electron transfer reactions at the interface, enabling
the application to a broader area of problems in electrochemistry, and the few
recent works in this field are also commented upon.Comment: 12 pages, 10 figures, perspective articl
Charge fluctuations in nano-scale capacitors
The fluctuations of the charge on an electrode contain information on the
microscopic correlations within the adjacent fluid and their effect on the
electronic properties of the interface. We investigate these fluctuations using
molecular dynamics simulations in a constant-potential ensemble with histogram
reweighting techniques. This approach offers in particular an efficient,
accurate and physically insightful route to the differential capacitance that
is broadly applicable. We demonstrate these methods with three different
capacitors: pure water between platinum electrodes, and a pure as well as a
solvent-based organic electrolyte each between graphite electrodes. The total
charge distributions with the pure solvent and solvent-based electrolytes are
remarkably Gaussian, while in the pure ionic liquid the total charge
distribution displays distinct non-Gaussian features, suggesting significant
potential-driven changes in the organization of the interfacial fluid
Mr
Gift of Dr. Mary Jane Esplen.Produced by Ned Wayburn ; book by Edgar Smith ; "t'is a pretty thing" [note]Piano vocal [instrumentation]Tell me you'll come with me [first line]I don't want to spoon in a bungalow [first line of refrain]G [key]Moderato [tempo]Popular song [form/genre]Man holding head [illustration]Frent [graphic artist]From Chas. E. & Brd. Musgrave (Dominion Music Co.) 8 Yonge St. Arcade Toronto [dealer stamp]Publisher's advertisement on back cover [note
Thermally Activated Magnetization and Resistance Decay during Near Ambient Temperature Aging of Co Nanoflakes in a Confining Semi-metallic Environment
We report the observation of magnetic and resistive aging in a self assembled
nanoparticle system produced in a multilayer Co/Sb sandwich. The aging decays
are characterized by an initial slow decay followed by a more rapid decay in
both the magnetization and resistance. The decays are large accounting for
almost 70% of the magnetization and almost 40% of the resistance for samples
deposited at 35 . For samples deposited at 50 the magnetization
decay accounts for of the magnetization and 50% of the resistance.
During the more rapid part of the decay, the concavity of the slope of the
decay changes sign and this inflection point can be used to provide a
characteristic time. The characteristic time is strongly and systematically
temperature dependent, ranging from x at 400K to x at 320K in samples deposited at . Samples deposited at 50
displayed a 7-8 fold increase in the characteristic time (compared to the samples) for a given aging temperature, indicating that this timescale may
be tunable. Both the temperature scale and time scales are in potentially
useful regimes. Pre-Aging, Scanning Tunneling Microscopy (STM) reveals that the
Co forms in nanoscale flakes. During aging the nanoflakes melt and migrate into
each other in an anisotropic fashion forming elongated Co nanowires. This aging
behavior occurs within a confined environment of the enveloping Sb layers. The
relationship between the characteristic time and aging temperature fits an
Arrhenius law indicating activated dynamics
How does living with a disability affect resident worry about environmental contamination?:A study of a long-term pervasive hazard
© 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group. While a growing body of research within the environmental hazards scholarship examines how disability affects human responses to major, sudden-onset environmental disasters, little attention has been given to understanding how disability affects responses to long-term, pervasive environmental hazards. Research analysing human responses to land and groundwater legacy contamination in residential areas has identified the significance of demographic and psychosocial determinants of worry, however the question of how living with a disability affects resident worry about contamination remains unanswered. This article provides a cornerstone study for exploring the relation between worry about environmental contamination and disability. A study of 486 adults living in 13 urban residential areas in Australia affected by a range of contaminants was undertaken in 2014. Ordinal logistic regression analysis found respondents with a disability were significantly more likely to worry about contamination than those without. People living with a disability had significantly higher amounts of worry about the contamination than those living without. Changes to residents’ daily habits in response to the contamination and perceptions of personal control over exposure to the contamination present important considerations for understanding the implications of worry for people living with and without a disability in the environmental contamination context
- …