27 research outputs found

    Iron and Ferritin Modulate MHC Class I Expression and NK Cell Recognition

    Get PDF
    The ability of pathogens to sequester iron from their host cells and proteins affects their virulence. Moreover, iron is required for various innate host defense mechanisms as well as for acquired immune responses. Therefore, intracellular iron concentration may influence the interplay between pathogens and immune system. Here, we investigated whether changes in iron concentrations and intracellular ferritin heavy chain (FTH) abundance may modulate the expression of Major Histocompatibility Complex molecules (MHC), and susceptibility to Natural Killer (NK) cell cytotoxicity. FTH downregulation, either by shRNA transfection or iron chelation, led to MHC surface reduction in primary cancer cells and macrophages. On the contrary, mouse embryonic fibroblasts (MEFs) from NCOA4 null mice accumulated FTH for ferritinophagy impairment and displayed MHC class I cell surface overexpression. Low iron concentration, but not FTH, interfered with IFN-Îł receptor signaling, preventing the increase of MHC-class I molecules on the membrane by obstructing STAT1 phosphorylation and nuclear translocation. Finally, iron depletion and FTH downregulation increased the target susceptibility of both primary cancer cells and macrophages to NK cell recognition. In conclusion, the reduction of iron and FTH may influence the expression of MHC class I molecules leading to NK cells activation

    FTH1 Pseudogenes in Cancer and Cell Metabolism

    No full text
    Ferritin, the principal intracellular iron-storage protein localized in the cytoplasm, nucleus, and mitochondria, plays a major role in iron metabolism. The encoding ferritin genes are members of a multigene family that includes some pseudogenes. Even though pseudogenes have been initially considered as relics of ancient genes or junk DNA devoid of function, their role in controlling gene expression in normal and transformed cells has recently been re-evaluated. Numerous studies have revealed that some pseudogenes compete with their parental gene for binding to the microRNAs (miRNAs), while others generate small interference RNAs (siRNAs) to decrease functional gene expression, and still others encode functional mutated proteins. Consequently, pseudogenes can be considered as actual master regulators of numerous biological processes. Here, we provide a detailed classification and description of the structural features of the ferritin pseudogenes known to date and review the recent evidence on their mutual interrelation within the complex regulatory network of the ferritin gene family

    Chemoresistance in H-Ferritin Silenced Cells: The Role of NF-ÎșB

    No full text
    Nuclear Factor-κB (NF-κB) is frequently activated in tumor cells contributing to aggressive tumor growth and resistance to chemotherapy. Here we demonstrate that Ferritin Heavy Chain (FHC) protein expression inversely correlates with NF-κB activation in cancer cell lines. In fact, FHC silencing in K562 and SKOV3 cancer cell lines induced p65 nuclear accumulation, whereas FHC overexpression correlated with p65 nuclear depletion in the same cell lines. In FHC-silenced cells, the p65 nuclear accumulation was reverted by treatment with the reactive oxygen species (ROS) scavenger, indicating that NF-κB activation was an indirect effect of FHC on redox metabolism. Finally, FHC knock-down in K562 and SKOV3 cancer cell lines resulted in an improved cell viability following doxorubicin or cisplatin treatment, being counteracted by the transient expression of inhibitory of NF-κB, IκBα. Our results provide an additional layer of information on the complex interplay of FHC with cellular metabolism, and highlight a novel scenario of NF-κB-mediated chemoresistance triggered by the downregulation of FHC with potential therapeutic implications

    Role of serum ferritin level on overall survival in patients with myelodysplastic syndromes: Results of a meta-analysis of observational studies

    No full text
    <div><p>Background</p><p>The role of serum ferritin (SF) as a prognostic factor has been analyzed in patients with myelodysplastic syndromes (MDS) who have undergone hematopoietic stem cell transplantation (HSCT), but the prognostic role of elevated SF levels is still controversial in lower risk MDS patients. Therefore, we performed a meta-analysis of all available published literature to evaluate whether elevated SF levels are associated with a worse overall survival (OS) among patients with low risk MDS.</p><p>Material and methods</p><p>A systematic bibliographic search of relevant studies was undertaken in accordance with guidelines for meta-analysis of observational studies in epidemiology. Electronic databases were searched through July 2016 for studies examining the level of SF as a prognostic factor in the adults affected by MDS.</p><p>Results</p><p>Six articles were included in the meta-analysis. A significant association between OS and SF was achieved for the threshold of SF≄1000 ng/mL, when the only study that used SF cut-off ≄2000 ng/mL was not included in the meta-analysis (RR = 1.33; 95% CI = 1.06–1.67). The estimated risk was 2.58 (95% CI = 1.41–4.74) when a SF cut-off≄500 ng/mL was considered.</p><p>Conclusions</p><p>Our findings underlined a worse survival in patients with MDS who had higher SF levels. The association was stronger and achieved statistical significance after stratification of analyses in which we excluded cut-offs of SF level considered as outliers. These results suggest that negative impact on OS already exist at SF level ≄500 ng/mL. Prospective studies, are needed to better understand this relationship and, above all, to clarify whether earlier iron chelation therapy could improve patients’ OS.</p></div

    FTH1P3, a Novel H-Ferritin Pseudogene Transcriptionally Active, Is Ubiquitously Expressed and Regulated during Cell Differentiation.

    No full text
    Ferritin, the major iron storage protein, performs its essential functions in the cytoplasm, nucleus and mitochondria. The variable assembly of 24 subunits of the Heavy (H) and Light (L) type composes the cytoplasmic molecule. In humans, two distinct genes code these subunits, both belonging to complex multigene families. Until now, one H gene has been identified with the coding sequence interrupted by three introns and more than 20 intronless copies widely dispersed on different chromosomes. Two of the intronless genes are actively transcribed in a tissue-specific manner. Herein, we report that FTH1P3, another intronless pseudogene, is transcribed. FTH1P3 transcript was detected in several cell lines and tissues, suggesting that its transcription is ubiquitary, as it happens for the parental ferritin H gene. Moreover, FTH1P3 expression is positively regulated during the cell differentiation process
    corecore