1,040 research outputs found

    Euclidean vs. non-Euclidean Gamma-Ray Bursts

    Get PDF
    We classify gamma-ray bursts (GRBs) according to their observed durations and physical properties of their spectra. We find that long/hard bursts (of duration T_90 > 2.5 s, and typical photon energy E_p > 0.8 MeV corresponding to BATSE's energy fluence hardness H^e_{32} > 3) show the strongest deviation from the three-dimensional Euclidean brightness distribution. The majority of GRBs, i.e., short bursts (T_90 2.5 s, and H^e_{32} < 3) show little, if any, deviations from the Euclidean distribution. These results contradict the prediction of simple extragalactic GRB models that the most distant bursts should be the most affected by cosmological energy redshift and time-dilation (long/soft GRBs). The strongly non-Euclidean GRB subclass has very hard spectra of typical photon energy above 1 MeV, i.e., outside the ideal energy range for optimal detection by BATSE. We discuss possible explanations of this puzzling feature of GRBs.Comment: 15 pages, LATEX text plus two postscript figures included. Submitted to ApJ Letters on November 24, 1997. Accepted on February 13, 199

    An Integrated Picture of Star Formation, Metallicity Evolution, and Galactic Stellar Mass Assembly

    Full text link
    We present an integrated study of star formation and galactic stellar mass assembly from z=0.05-1.5 and galactic metallicity evolution from z=0.05-0.9 using a very large and highly spectroscopically complete sample selected by rest-frame NIR bolometric flux in the GOODS-N. We assume a Salpeter IMF and fit Bruzual & Charlot (2003) models to compute the galactic stellar masses and extinctions. We determine the expected formed stellar mass density growth rates produced by star formation and compare them with the growth rates measured from the formed stellar mass functions by mass interval. We show that the growth rates match if the IMF is slightly increased from the Salpeter IMF at intermediate masses (~10 solar masses). We investigate the evolution of galaxy color, spectral type, and morphology with mass and redshift and the evolution of mass with environment. We find that applying extinction corrections is critical when analyzing galaxy colors; e.g., nearly all of the galaxies in the green valley are 24um sources, but after correcting for extinction, the bulk of the 24um sources lie in the blue cloud. We find an evolution of the metallicity-mass relation corresponding to a decrease of 0.21+/-0.03 dex between the local value and the value at z=0.77 in the 1e10-1e11 solar mass range. We use the metallicity evolution to estimate the gas mass of the galaxies, which we compare with the galactic stellar mass assembly and star formation histories. Overall, our measurements are consistent with a galaxy evolution process dominated by episodic bursts of star formation and where star formation in the most massive galaxies (>1e11 solar masses) ceases at z<1.5 because of gas starvation. (Abstract abridged)Comment: 48 pages, Accepted by the Astrophysical Journa

    Growing massive black holes through super-critical accretion of stellar-mass seeds

    Full text link
    The rapid assembly of the massive black holes that power the luminous quasars observed at z∼6−7z \sim 6-7 remains a puzzle. Various direct collapse models have been proposed to head-start black hole growth from initial seeds with masses ∼105 M⊙\sim 10^5\,\rm M_\odot, which can then reach a billion solar mass while accreting at the Eddington limit. Here we propose an alternative scenario based on radiatively inefficient super-critical accretion of stellar-mass holes embedded in the gaseous circum-nuclear discs (CNDs) expected to exist in the cores of high redshift galaxies. Our sub-pc resolution hydrodynamical simulations show that stellar-mass holes orbiting within the central 100 pc of the CND bind to very high density gas clumps that arise from the fragmentation of the surrounding gas. Owing to the large reservoir of dense cold gas available, a stellar-mass black hole allowed to grow at super-Eddington rates according to the "slim disc" solution can increase its mass by 3 orders of magnitudes within a few million years. These findings are supported by simulations run with two different hydro codes, RAMSES based on the Adaptive Mesh Refinement technique and GIZMO based on a new Lagrangian Godunov-type method, and with similar, but not identical, sub-grid recipes for star formation, supernova feedback, black hole accretion and feedback. The low radiative efficiency of super-critical accretion flows are instrumental to the rapid mass growth of our black holes, as they imply modest radiative heating of the surrounding nuclear environment.Comment: 12 pages, 8 figures, 2 tables. Accepted for publication in MNRA

    Evidence for a Gradual Decline in the Universal Rest-Frame UV Luminosity Density for z < 1

    Full text link
    We have utilized various magnitude-limited samples drawn from an extremely deep and highly complete spectroscopic redshift survey of galaxies observed in seven colors in the Hawaii Survey Fields and the Hubble Deep Field to investigate the evolution of the universal rest-frame ultraviolet luminosity density from z = 1 to the present. The multi-color data (U', B, V, R, I, J, HK') enable the sample selection to be made in the rest-frame ultraviolet for the entire redshift range. Due to the large sample size and depth (U_{AB} = 24.75, B_{AB} = 24.75, I_{AB} = 23.5), we are able to accurately determine the luminosity density to z = 1. We do not confirm the very steep evolution reported by Lilly et al. (1996) but instead find a shallower slope, approximately (1+z)^{1.5} for q0 = 0.5, which would imply that galaxy formation is continuing smoothly to the present time rather than peaking at z = 1. Much of the present formation is taking place in smaller galaxies. Detailed comparisons with other recent determinations of the evolution are presented.Comment: 37 pages including 18 figures. Also available at http://www.ifa.hawaii.edu/~acowie/uvlum.html To be published in the August, 1999 Astronomical Journal (accepted April 22, 1999

    The Cosmic Near Infrared Background: Remnant Light from Early Stars

    Full text link
    The redshifted ultraviolet light from early stars at z ~ 10 contributes to the cosmic near infrared background. We present detailed calculations of its spectrum with various assumptions about metallicity and mass spectrum of early stars. We show that if the near infrared background has a stellar origin, metal-free stars are not the only explanation of the excess near infrared background; stars with metals (e.g. Z=1/50 Z_sun) can produce the same amount of background intensity as the metal-free stars. We quantitatively show that the predicted average intensity at 1-2 microns is essentially determined by the efficiency of nuclear burning in stars, which is not very sensitive to metallicity. We predict \nu I_\nu / \dot{\rho}_* ~ 4-8 nW m^-2 sr^-1, where \dot{\rho_*} is the mean star formation rate at z=7-15 (in units of M_sun yr^-1 Mpc^-3) for stars more massive than 5 M_sun. On the other hand, since we have very little knowledge about the form of mass spectrum of early stars, uncertainty in the average intensity due to the mass spectrum could be large. An accurate determination of the near infrared background allows us to probe formation history of early stars, which is difficult to constrain by other means. While the star formation rate at z=7-15 inferred from the current data is significantly higher than the local rate at z<5, it does not rule out the stellar origin of the cosmic near infrared background. In addition, we show that a reasonable initial mass function, coupled with this star formation rate, does not over-produce metals in the universe in most cases, and may produce as little as less than 1 % of the metals observed in the universe today.Comment: 37 pages, 7 figures, (v2) Changes to abstract to emphasize that the excess near infrared background can solely be explained by stars with significant metals. (Metal-free stars are not necessarily needed.) (v3) Expanded discussion on the metallicity constraint. Accepted for publication in Ap

    On the Determination of Star Formation Rates in Evolving Galaxy Populations

    Get PDF
    The redshift dependence of the luminosity density in certain wavebands (e.g. UV and H-alpha) can be used to infer the history of star formation in the populations of galaxies producing this luminosity. This history is a useful datum in studies of galaxy evolution. It is therefore important to understand the errors that attend the inference of star formation rate densities from luminosity densities. This paper explores the self-consistency of star formation rate diagnostics by reproducing commonly used observational procedures in a model with known galaxy populations, evolutionary histories and spectral emission properties. The study reveals a number of potential sources of error in the diagnostic processes arising from the differential evolution of different galaxy types. We argue that multi-wavelength observations can help to reduce these errors.Comment: 13 pages (including 5 encapsulated postscript figures), aastex, accepted for publication in Ap

    Rapid Formation of Supermassive Black Hole Binaries in Galaxy Mergers with Gas

    Get PDF
    Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that, following the merger of two massive galaxies, a SMBH binary will form, shrink due to stellar or gas dynamical processes and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas due to the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years following the collision between two spiral galaxies. A massive, turbulent nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than a million years as a result of the gravitational drag from the gas rather than from the stars.Comment: Accepted for publication in Science, 40 pages, 7 figures, Supplementary Information include

    Formation and evolution of galaxy dark matter halos and their substructure

    Get PDF
    We use the ``Via Lactea'' simulation to study the co-evolution of a Milky Way-size LambdaCDM halo and its subhalo population. While most of the host halo mass is accreted over the first 6 Gyr in a series of major mergers, the physical mass distribution [not M_vir(z)] remains practically constant since z=1. The same is true in a large sample of LambdaCDM galaxy halos. Subhalo mass loss peaks between the turnaround and virialization epochs of a given mass shell, and declines afterwards. 97% of the z=1 subhalos have a surviving bound remnant at the present epoch. The retained mass fraction is larger for initially lighter subhalos: satellites with maximum circular velocities Vmax=10 km/s at z=1 have today about 40% of their mass back then. At the first pericenter passage a larger average mass fraction is lost than during each following orbit. Tides remove mass in substructure from the outside in, leading to higher concentrations compared to field halos of the same mass. This effect, combined with the earlier formation epoch of the inner satellites, results in strongly increasing subhalo concentrations towards the Galactic center. We present individual evolutionary tracks and present-day properties of the likely hosts of the dwarf satellites around the Milky Way. The formation histories of ``field halos'' that lie today beyond the Via Lactea host are found to strongly depend on the density of their environment. This is caused by tidal mass loss that affects many field halos on eccentric orbits.Comment: 20 pages, 18 figures. Figures 6,7 and 8 corrected in this version, for details see the erratum in ApJ 679, 1680 and http://www.ucolick.org/~diemand/vl/publ/vlevolerr.pdf. Data, movies and images are available at http://www.ucolick.org/~diemand/vl

    Topology of the Galaxy Distribution in the Hubble Deep Fields

    Full text link
    We have studied topology of the distribution of the high redshift galaxies identified in the Hubble Deep Field (HDF) North and South. The two-dimensional genus is measured from the projected distributions of the HDF galaxies at angular scales from 3.8′′3.8'' to 6.1′′ 6.1''. We have also divided the samples into three redshift slices with roughly equal number of galaxies using photometric redshifts to see possible evolutionary effects on the topology. The genus curve of the HDF North clearly indicates clustering of galaxies over the Poisson distribution while the clustering is somewhat weaker in the HDF South. This clustering is mainly due to the nearer galaxies in the samples. We have also found that the genus curve of galaxies in the HDF is consistent with the Gaussian random phase distribution with no significant redshift dependence.Comment: 14 pages, 4 figures, submitted to Ap
    • …
    corecore