7 research outputs found

    Variable phenotype in HNF1B mutations: extrarenal manifestations distinguish affected individuals from the population with congenital anomalies of the kidney and urinary tract

    Get PDF
    Background: Mutations in hepatocyte nuclear factor 1B (HNF1B) have been associated with congenital anomalies of the kidney and urinary tract (CAKUT) in humans. Diabetes and other less frequent anomalies have also been described. Variable penetrance and intrafamilial variability have been demonstrated including severe prenatal phenotypes. Thus, it is important to differentiate this entity from others with similar clinical features and perform confirmatory molecular diagnosis. Methods: This study reports the results of HNF1B screening in a cohort of 60 patients from 58 unrelated families presenting with renal structural anomalies and/or non-immune glucose metabolism alterations, and other minor features suggesting HNF1B mutations. Results: This study identified a pathogenic variant in 23 patients from 21 families. The most frequent finding was bilateral cystic dysplasia or hyperechogenic kidneys (87% of patients). Sixty percent of them also fulfilled the criteria for impaired glucose metabolism, and these were significantly older than those patients with an HNF1B mutation but without diabetes or prediabetes (14.4 versus 3.3years, P<0.05). Furthermore, patients with HNF1B mutations had higher frequency of pancreatic structural anomalies and hypomagnesaemia than patients without mutations (P<0.001 and P = 0.003, respectively). Hyperuricaemia and increased liver enzymes were detected in some patients as well. Conclusions: Renal anomalies found in patients with HNF1B mutations are frequently unspecific and may resemble those found in other renal pathologies (CAKUT, ciliopathies). Active searching for extrarenal minor features, especially pancreatic structural anomalies or hypomagnesaemia, could support the indication for molecular diagnosis to identify HNF1B mutations

    Use of rasburicase to improve kidney function in children with hyperuricemia and acute kidney injury

    Get PDF
    Background Hyperuricemia contributes to decrease in kidney function and induces additional renal damage in children with acute kidney injury (AKI). Rasburicase oxidizes uric acid (UA), decreasing its serum quantities in less than 24 h. Methods This is a retrospective study involving hospitalized patients under 18 years of age with underlying pathology diagnosed with AKI and severe hyperuricemia treated with rasburicase over a 4-year period. Results We describe 15 patients from 4 days of life to 18 years (median: 4.4 years). Seventy-three percent had known underlying pathologies. All presented worsening of basal renal function or AKI data. All received the usual medical treatment for AKI without response. Twenty percent received an extrarenal depuration technique. All had hyperuricemia with a mean (± SD) of 13.1 (± 2.19) mg/dl. After rasburicase administration UA levels fell to a mean (± SD) of 0.76 (± 0.62) mg/dl (p < 0.001) in less than 24 h. In parallel, a decrease in the mean plasma creatinine was observed (2.92 mg/dl to 1.93 mg/dl (p = 0.057)) together with a significant improvement of the mean glomerular filtration rate (16.3 ml/min/1.73 m2 to 78.6 ml/min/1.73 m2) (p = 0.001)). No side effects were recorded. Kidney function normalized in all cases or returned to baseline levels. Conclusions Although the use of rasburicase is not routinely approved in pediatric patients with severe hyperuricemia and AKI, it has been used successfully without complications, and helped prevent progressive kidney damage. This study could serve as a basis for suggesting the off-label use of rasburicase for the management of complex pediatric patients in whom UA plays an important role in the development of AKI.This study was supported by a grant from the Department of Education (IT1281-19) of the Basque Government. The funder had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Novel compound heterozygous mutations of CLDN16 in a patient with familial hypomagnesemia with hypercalciuria and nephrocalcinosis

    Get PDF
    Background: Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is an autosomal recessive tubulopathy characterized by excessive urinary wasting of magnesium and calcium, bilateral nephrocalcinosis, and progressive chronic renal failure in childhood or adolescence. FHHNC is caused by mutations in CLDN16 and CLDN19, which encode the tight-junction proteins claudin-16 and claudin-19, respectively. Most of these mutations are missense mutations and large deletions are rare. Methods: We examined the clinical and biochemical features of a Spanish boy with early onset of FHHNC symptoms. Exons and flanking intronic segments of CLDN16 and CLDN19 were analyzed by direct sequencing. We developed a new assay based on Quantitative Multiplex PCR of Short Fluorescent Fragments (QMPSF) to investigate large CLDN16 deletions. Results: Genetic analysis revealed two novel compound heterozygous mutations of CLDN16, comprising a missense mutation, c.277G>A; p.(Ala93Thr), in one allele, and a gross deletion that lacked exons 4 and 5,c.(840+25_?)del, in the other allele. The patient inherited these variants from his mother and father, respectively. Conclusions: Using direct sequencing and our QMPSF assay, we identified the genetic cause of FHHNC in our patient. This QMPSF assay should facilitate the genetic diagnosis of FHHNC. Our study provided additional data on the genotypic spectrum of the CLDN16 gene.This work was supported by Grant PI17/00153 co-financed by the Instituto de Salud Carlos III (Spain) and the European Regional Development Fund "Another way to build Europe". Editoria

    Genetics of Type III Bartter Syndrome in Spain, Proposed Diagnostic Algorithm

    Get PDF
    9 p.The p.Ala204Thr mutation (exon 7) of the CLCNKB gene is a "founder" mutation that causes most of type III Bartter syndrome cases in Spain. We performed genetic analysis of the CLCNKB gene, which encodes for the chloride channel protein ClC-Kb, in a cohort of 26 affected patients from 23 families. The diagnostic algorithm was: first, detection of the p.Ala204Thr mutation; second, detecting large deletions or duplications by Multiplex Ligation-dependent Probe Amplification and Quantitative Multiplex PCR of Short Fluorescent Fragments; and third, sequencing of the coding and flanking regions of the whole CLCNKB gene. In our genetic diagnosis, 20 families presented with the p.Ala204Thr mutation. Of those, 15 patients (15 families) were homozygous (57.7% of overall patients). Another 8 patients (5 families) were compound heterozygous for the founder mutation together with a second one. Thus, 3 patients (2 siblings) presented with the c. -19-?_2053+? del deletion (comprising the entire gene); one patient carried the p.Val170Met mutation (exon 6); and 4 patients (3 siblings) presented with the novel p.Glu442Gly mutation (exon 14). On the other hand, another two patients carried two novel mutations in compound heterozygosis: one presented the p.Ile398_Thr401del mutation (exon 12) associated with the c. -19-?_2053+? del deletion, and the other one carried the c.1756+1G>A splice-site mutation (exon 16) as well as the already described p.Ala210Val change (exon 7). One case turned out to be negative in our genetic screening. In addition, 51 relatives were found to be heterozygous carriers of the described CLCNKB mutations. In conclusion, different mutations cause type III Bartter syndrome in Spain. The high prevalence of the p.Ala204Thr in Spanish families thus justifies an initial screen for this mutation. However, should it not be detected further investigation of the CLCNKB gene is warranted in clinically diagnosed families.This study was supported by two grants (PI09/90888 and PI11/01412) from the FIS of the Instituto de Salud Carlos III, Madrid, Spain, and the Eitb Maratoia-Bioef (BIO08/ER/020) the Basque Foundation for Health Innovation and Research (BIOEF, from the Basque Berrikuntza + Ikerketa + Osasuna Eusko Fundazioa). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Novel Variant in the CNNM2 Gene Associated with Dominant Hypomagnesemia

    Get PDF
    The maintenance of magnesium (Mg2+) homeostasis is essential for human life. The Cystathionine-beta-synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) have been described to be involved in maintaining Mg2+ homeostasis. Among these CNNMs, CNNM2 is expressed in the basolateral membrane of the kidney tubules where it is involved in Mg2+ reabsorption. A total of four patients, two of them with a suspected disorder of calcium metabolism, and two patients with a clinical diagnosis of primary tubulopathy were screened for mutations by Next-Generation Sequencing (NGS). We found one novel likely pathogenic variant in the heterozygous state (c.2384C>A; p.(Ser795*)) in theCNNM2gene in a family with a suspected disorder of calcium metabolism. In this family, hypomagnesemia was indirectly discovered. Moreover, we observed three novel variants of uncertain significance in heterozygous state in the other three patients (c.557G>C; p.(Ser186Thr), c.778A>T; p.(Ile260Phe), and c.1003G>A; p.(Asp335Asn)). Our study shows the utility of Next-Generation Sequencing in unravelling the genetic origin of rare diseases. In clinical practice, serum Mg2+ should be determined in calcium and PTH-related disorders.This study was supported by three grants from the Department of Health (2017111014, 2018111097 and 2019111052) and one grant from the Department of Education (IT1281-19) of the Basque Government. This work is generated within the Endocrine European Reference Network (Project ID number of Endo-ERN: 739527). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Five Patients with Disorders of Calcium Metabolism Presented with GCM2 Gene Variants

    Get PDF
    The GCM2 gene encodes a transcription factor predominantly expressed in parathyroid cells that is known to be critical for development, proliferation and maintenance of the parathyroid cells. A cohort of 127 Spanish patients with a disorder of calcium metabolism were screened for mutations by Next-Generation Sequencing (NGS). A targeted panel for disorders of calcium and phosphorus metabolism was designed to include 65 genes associated with these disorders. We observed two variants of uncertain significance (p.(Ser487Phe) and p.Asn315Asp), one likely pathogenic (p.Val382Met) and one benign variant (p.Ala393_Gln395dup) in the GCM2 gene in the heterozygous state in five families (two index cases had hypocalcemia and hypoparathyroidism, respectively, and three index cases had primary hyperparathyroidism). Our study shows the utility of NGS in unravelling the genetic origin of some disorders of the calcium and phosphorus metabolism, and confirms the GCM2 gene as an important element for the maintenance of calcium homeostasis. Importantly, a novel variant in the GCM2 gene (p.(Ser487Phe)) has been found in a patient with hypocalcemia.This study was supported by three grants from the Department of Health (2017111014, 2018111097 and 2019111052) and one grant from the Department of Education (IT1281-19) of the Basque Government. This work is generated within the Endocrine European Reference Network (Project ID number of Endo-ERN: 739527). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscrip

    Acidosis tubular renal distal hereditaria: correlación genotípica, evolución a largo plazo y nuevas perspectivas terapéuticas

    No full text
    [ES] La acidosis tubular renal distal (ATRD) es una enfermedad rara que se debe al fallo del proceso normal de acidificación de la orina a nivel tubular distal y colector. Se caracteriza por una acidosis metabólica hiperclorémica persistente, con anión gap normal en plasma,en presencia de un pH urinario elevado y baja excreción urinaria de amonio.Se han descrito hasta el momento 5 genes cuyas mutaciones dan lugar a ATRD primaria.Las alteraciones de los genes ATP6V1B1 y ATP6V0A4 se heredan de forma recesiva y están asociadas a formas de inicio más precoces y con sordera neurosensorial en muchos casos.Las variantes patogénicas en el gen SLC4A1 se heredan habitualmente de forma dominante y dan lugar a cuadros más leves, con un diagnóstico más tardío y alteraciones electrolíticas menores. Sin embargo, la evolución a nefrocalcinosis y litiasis, y el desarrollo de enfermedadrenal crónica a medio-largo plazo se ha descrito de forma similar en estos 3 grupos. Por último, se han descrito también formas recesivas de ATRD asociadas a mutaciones en los genes FOXI1 y WDR72. El manejo clínico de la ATRD se basa en sales de bicarbonato o citrato, que no logran corre-gir en todos los casos las alteraciones metabólicas descritas y, por lo tanto, las consecuencias asociadas a ellas. Recientemente, un nuevo tratamiento basado en sales de bicarbonato y citrato de liberación prolongada ha recibido la denominación de medicamento huérfano en Europa para el tratamiento de la ATRD.[EN] Distal renal tubular acidosis (DRTA) is a rare disease resulting from a failure in the normal urine acidification process at the distal tubule and collecting duct level. It is characterised by persistent hyperchloremic metabolic acidosis, with a normal anion gap in plasma, in the presence of high urinary pH and low urinary excretion of ammonium. To date, 5 genes whose mutations give rise to primary DRTA have been described. Altera- tions in the ATP6V1B1 and ATP6V0A4 genes are inherited recessively and are associated with forms of early onset and, in many cases, with neurosensorial deafness. Pathogenic variants in the SLC4A1 gene are habitually inherited dominantly and give rise to milder symptoms, with a later diagnosis and milder electrolytic alterations. Nonetheless, evolution to neph- rocalcinosis and lithiasis, and the development of chronic kidney disease in the medium to long term has been described in a similar manner in all 3 groups. Lastly, recessive forms of DTRA associated to mutations in the FOXI1 and WDR72 genes have also been described. The clinical management of DTRA is based on bicarbonate or citrate salts, which do not succeed in correcting all cases of the metabolic alterations described and, thus, the consequences associated with them. Recently, a new treatment based on slow-release bicarbonate and citrate salts has received the designation of orphan drug in Europe for the treatment of DTRA.La empresa farmacéutica Advicenne (Francia) ha proporcio-nado financiación para el estudio de pacientes con acidosistubular renal distal, pero no ha participado en la realizaciónde este artículo (beca BC/A/19/039)
    corecore