10 research outputs found

    An integrated process for planning, delivery, and stewardship of urban nature-based solutions: the Connecting Nature Framework

    Get PDF
    Mainstreaming nature-based solutions in cities has grown in scale and magnitude in recent times but is still considered to be the main challenge for transitioning our cities and their communities to be more climate resilient and liveable: environmentally, economically, and socially. Furthermore, taking nature-based solutions to the next level, and scaling them out to all urban contexts to achieve a greater impact, is proving to be slow and often conflicts with other transitioning initiatives such as energy generation, mobility and transport initiatives, and infilling to combat sprawl. So, the task is neither easy nor straightforward; there are many barriers to this novel transition, especially when it comes to collaborative approaches to implementing nature-based solutions with diverse urban communities and within city authorities themselves. This paper reports on a new process that is systematically co-produced and captured as a framework for planning nature-based solutions that emerged during the Connecting Nature project. The Connecting Nature Framework is a three-stage, iterative process that involves seven key activity areas for mainstreaming nature-based solutions: technical solutions, governance, financing and business models, nature-based enterprises, co-production, reflexive monitoring, and impact assessment. The tested and applied framework is designed to address and overcome barriers to the implementation of nature-based solutions in cities via a co-created, iterative, and reflective approach. The planning process guided by the proposed framework has already yielded promising results with some of the cities of the project, though further usage and its adoption by other cities is needed to explore its potential in different contexts especially in the Global South. The paper concludes with suggestions on how this may be realised

    Memories of 'Holodomor' and National Socialism in Ukrainian political culture

    No full text

    Neutrino analysis of the 2010 september crab nebula flare and time-integrated constraints on neutrino emission from the crab using IceCube

    Get PDF
    We present the results for a search of high-energy muon neutrinos with the IceCube detector in coincidence with the Crab nebula flare reported on September 2010 by various experiments. Due to the unusual flaring state of the otherwise steady source we performed a prompt analysis of the 79-string configuration data to search for neutrinos that might be emitted along with the observed gamma-rays. We performed two different and complementary data selections of neutrino events in the time window of 10 days around the flare. One event selection is optimized for discovery of E^-2 neutrino spectrum typical of 1st order Fermi acceleration. A similar event selection has also been applied to the 40-string data to derive the time-integrated limits to the neutrino emission from the Crab. The other event selection was optimized for discovery of neutrino spectra with softer spectral index and TeV energy cut-offs as observed for various galactic sources in gamma-rays. The 90% CL best upper limits on the Crab flux during the 10 day flare are 4.73 x 10^-11 cm-2 s-1 TeV-1 for an E^-2 neutrino spectrum and 2.50 x 10^-10 cm-2 s-1 TeV-1 for a softer neutrino spectra of E-2.7, as indicated by Fermi measurements during the flare. IceCube has also set a time-integrated limit on the neutrino emission of the Crab using 375.5 days of livetime of the 40-string configuration data. This limit is compared to existing models of neutrino production from the Crab and its impact on astrophysical parameters is discussed. The most optimistic predictions of some models are already rejected by the IceCube neutrino telescope with more than 90% CL

    Observation of Anisotropy in the Arrival Directions of Galactic Cosmic Rays at Multiple Angular Scales with IceCube.

    Get PDF
    Between 2009 May and 2010 May, the IceCube neutrino detector at the South Pole recorded 32 billion muons generated in air showers produced by cosmic rays with a median energy of 20TeV. With a data set of this size, it is possible to probe the southern sky for per-mil anisotropy on all angular scales in the arrival direction distribution of cosmic rays. Applying a power spectrum analysis to the relative intensity map of the cosmic ray flux in the southern hemisphere, we show that the arrival direction distribution is not isotropic, but shows significant structure on several angular scales. In addition to previously reported large-scale structure in the form of a strong dipole and quadrupole, the data show small-scale structure on scales between 15° and 30°. The skymap exhibits several localized regions of significant excess and deficit in cosmic ray intensity. The relative intensity of the smaller-scale structures is about a factor of five weaker than that of the dipole and quadrupole structure. The most significant structure, an excess localized at (right ascension α = 1224 and declination δ = -474), extends over at least 20° in right ascension and has a post-trials significance of 5.3σ. The origin of this anisotropy is still unknown. © 2011. The American Astronomical Society. All rights reserved.0SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Neutrino analysis of the 2010 September Crab Nebula flare and time-integrated constraints on neutrino emission from the Crab using IceCube

    No full text
    We present the results of a search for high-energy muon neutrinos with the IceCube detector in coincidence with the Crab Nebula flare reported on 2010 September by various experiments. Due to the unusual flaring state of the otherwise steady source we performed a prompt analysis of the 79-string configuration data to search for neutrinos that might be emitted along with the observed. gamma-rays. We performed two different and complementary data selections of neutrino events in the time window of 10 days around the flare. One event selection is optimized for discovery of E-upsilon(2). neutrino spectrum typical of first-order Fermi acceleration. A similar event selection has also been applied to the 40-string data to derive the time-integrated limits to the neutrino emission from the Crab. The other event selection was optimized for discovery of neutrino spectra with softer spectral index and TeV energy cutoffs as observed for various Galactic sources in. gamma-rays. The 90% confidence level (CL) best upper limits on the Crab flux during the 10 day flare are 4.73 x 10(-11) cm(-2) s(-1) TeV-1 for an E-upsilon(2). neutrino spectrum and 2.50 x 10(-10) cm(-2) s(-1) TeV-1 for a softer neutrino spectra of E-upsilon(-2.7), as indicated by Fermi measurements during the flare. In this paper, we also illustrate the impact of the time-integrated limit on the Crab neutrino steady emission. The limit obtained using 375.5 days of the 40-string configuration is compared to existing models of neutrino production from the Crab and its impact on astrophysical parameters is discussed. The most optimistic predictions of some models are already rejected by the IceCube neutrino telescope with more than 90% CL

    Quellen– und Literaturverzeichnis

    No full text

    Quellen und Literatur

    No full text
    corecore