35 research outputs found

    Application of hyperpolarised Helium-3 in lung functional magnetic resonance imaging

    Get PDF
    Looking inside the lungs without the danger of ionizing radiation side effects became available with magnetic resonance imaging using hyperpolarised noble gases. This technique has the potential to become a real tool for assessing in vivo ventilation, perfusion and even lung microstructure. The work covered in this research was aimed to improve the existing method for 3He polarisation and open the possibility to develop new modalities to probe the lung microstructure that could then be used in clinical trials. For this purpose, the polarisation facility was remodeled and new components were added. The rest of the work was focused on developing diffusion techniques that are more appropriate for the assessment of lung diseases. The improvement of the 3He polarisation facility consisted in the optimization of the gas flow path, implementation of a new dispensing method and new controlling protocol. The capacity of the polarisation system was increased by using a more powerful laser. The outcome of this was an increase in polarisation rate and a significant reduction of the dispensing time. Altogether this allow for clinical studies to be performed without too much delay. A clinical study aimed to distinguish differences between children born at term and premature was started on 70 volunteers. Three methods for measuring diffusion were used : spin echo diffusion weighted method, SPAMM tagging and MR diffusion spectroscopy. The first was previously used in the group and the last two were developed during this research. The results were correlated with basic pulmonary functional tests(spirometry and plethysmography) and also with the multiple breaths nitrogen wash-out results. No differences were found in the two groups. The results don’t agree with the current theories on lung growth and suggest that alveolarisation occurs even after the age of 8, possibly up to adult age. This is very important to be investigated further due to its clinical importance

    Application of hyperpolarised Helium-3 in lung functional magnetic resonance imaging

    Get PDF
    Looking inside the lungs without the danger of ionizing radiation side effects became available with magnetic resonance imaging using hyperpolarised noble gases. This technique has the potential to become a real tool for assessing in vivo ventilation, perfusion and even lung microstructure. The work covered in this research was aimed to improve the existing method for 3He polarisation and open the possibility to develop new modalities to probe the lung microstructure that could then be used in clinical trials. For this purpose, the polarisation facility was remodeled and new components were added. The rest of the work was focused on developing diffusion techniques that are more appropriate for the assessment of lung diseases. The improvement of the 3He polarisation facility consisted in the optimization of the gas flow path, implementation of a new dispensing method and new controlling protocol. The capacity of the polarisation system was increased by using a more powerful laser. The outcome of this was an increase in polarisation rate and a significant reduction of the dispensing time. Altogether this allow for clinical studies to be performed without too much delay. A clinical study aimed to distinguish differences between children born at term and premature was started on 70 volunteers. Three methods for measuring diffusion were used : spin echo diffusion weighted method, SPAMM tagging and MR diffusion spectroscopy. The first was previously used in the group and the last two were developed during this research. The results were correlated with basic pulmonary functional tests(spirometry and plethysmography) and also with the multiple breaths nitrogen wash-out results. No differences were found in the two groups. The results don’t agree with the current theories on lung growth and suggest that alveolarisation occurs even after the age of 8, possibly up to adult age. This is very important to be investigated further due to its clinical importance

    Comparison of inter subject variability and reproducibility of whole brain proton spectroscopy.

    Get PDF
    The aim of these studies was to provide reference data on intersubject variability and reproducibility of metabolite ratios for Choline/Creatine (Cho/Cr), N-acetyl aspartate/Choline (NAA/Cho) and N-acetyl aspartate/Creatine (NAA/Cr), and individual signal-intensity normalised metabolite concentrations of NAA, Cho and Cr. Healthy volunteers underwent imaging on two occasions using the same 3T Siemens Verio magnetic resonance scanner. At each session two identical Metabolic Imaging and Data Acquisition Software (MIDAS) sequences were obtained along with standard structural imaging. Metabolite maps were created and regions of interest applied in normalised space. The baseline data from all 32 volunteers were used to calculate the intersubject variability, while within session and between session reproducibility were calculated from all the available data. The reproducibility of measurements were used to calculate the overall and within session 95% prediction interval for zero change. The within and between session reproducibility data were lower than the values for intersubject variability, and were variable across the different brain regions. The within and between session reproducibility measurements were similar for Cho/Cr, NAA/Choline, Cho and Cr (11.8%, 11.4%, 14.3 and 10.6% vs. 11.9%, 11.4%, 13.5% and 10.5% respectively), but for NAA/Creatine and NAA between session reproducibility was lower (9.3% and 9.1% vs. 10.1% and 9.9%; p <0.05). This study provides additional reference data that can be utilised in interventional studies to quantify change within a single imaging session, or to assess the significance of change in longitudinal studies of brain injury and disease.TV Veenith was supported by clinical research training fellowship from the National Institute of Academic Anaesthesia and Raymond Beverly Sackler studentship. VFJN is supported by an NIHR academic clinical fellowship. JPC was supported by Wellcome trust project grant. DKM is supported by an NIHR Senior Investigator Award. This work was supported by a Medical Research Council (UK) Program Grant (Acute brain injury: heterogeneity of mechanisms, therapeutic targets and outcome effects (G9439390 ID 65883)), the UK National Institute of Health Research Biomedical Research Centre at Cambridge, and the Technology Platform funding provided by the UK Department of Health.This article was originally published in PLoS ONE (Veenith TV, Mada M, Carter E, Grossac J, Newcombe V, et al. (2014) Comparison of Inter Subject Variability and Reproducibility of Whole Brain Proton Spectroscopy. PLoS ONE 9(12): e115304. doi:10.1371/journal.pone.0115304

    Best practice for the nuclear medicine technologist in CT-based attenuation correction and calcium score for nuclear cardiology

    Get PDF
    Abstract The use of hybrid systems is increasingly growing in Europe and this is progressively important for the final result of diagnostic tests. As an integral part of the hybrid imaging system, computed tomography (CT) plays a crucial role in myocardial perfusion imaging diagnostics. Throughout Europe, a variety of equipment is available and also different university curricula of the nuclear medicine technologist are observed. Hence, the Technologist Committee of the European Association of Nuclear Medicine proposes to identify, through a bibliographic review, the recommendations for best practice in computed tomography applied to attenuation correction and calcium score in myocardial perfusion imaging, which courses in the set of knowledge, skills, and competencies for nuclear medicine technologists. This document aims at providing recommendations for CT acquisition protocols and CT image optimization in nuclear cardiology
    corecore