78 research outputs found

    The EUPM and EUFOR Althea missions in Bosnia and Herzegovina: An evaluation

    Get PDF
    The political changes in Europe and the shift in the world\u27s balance of power brought about by the collapse of the Soviet Union forced the European Union in the early 1990\u27s to redefine the possible role it wanted to play in the international arena. From being an organization focused mostly on economic cooperation, the European Union quickly transformed itself into a player interested also in the security realm. The first place where the EU attempted to prove itself as a new crisis management power was post-war Bosnia-Herzegovina, a country that needed physical, political and social reconstruction. As a result in 2003 Brussels launched its first-ever civilian crisis management mission, the European Union\u27s Police Mission in Bosnia -- Herzegovina (EUPM). It was quickly supplemented by the military crisis management mission -- EUFOR Althea, launched in 2004.;This study evaluates the successes and failures of the EU\u27s crisis management missions in Bosnia with a special emphasis on their impact on Bosnian social and political life. It argues that when deploying its police officers on the ground Brussels was not ready to handle the complex problems of the country. As a result the EU failed to provide Bosnia with the best possible assistance with its transition into a sustainable country. The shortcomings of the mission exposed the weaknesses of the EU and consequently undermined its role as a power able to help to resolve Bosnia\u27s political deadlock and hindered cooperation between Brussels and Sarajevo.;Fortunately, the military component of the EU\u27s crisis management in Bosnia proved to be much more successful than the civilian one. EUFOR Althea was able to secure the situation in the country and prevented the possible outbreak of renewed violence. On the other hand, it can be argued that much of its success was due to the limited scope of its tasks and good coordination with the previous NATO mission. Moreover, the relationship between Althea and EUPM left much to be desired. Whereas for Brussels the shortcomings of the mission served as a lesson for further improvement, they proved to be fatal for Bosnia\u27s political life. Thus, although the EU may have learned how to conduct crisis management missions, it has yet to learn how to assist Bosnia with resolving its problems

    Nornicotine impairs endothelial cell-cell adherens junction complexes in EA.hy926 cell line via structural reorganization of F-actin

    Get PDF
    The aim of the study was to estimate the effect of nornicotine on endothelial EA.hy926 cells in the context of its impact on cell-cell junctions. The objective of the study was to determine the relationship between junctional proteins and F-actin after treating the cells with nornicotine. After 24 h of cell exposure to 0.08, 0.12, and 0.16 ng/mL nornicotine, analysis was performed of cell death, cell migration, ultrastructure, and colocalization of beta-catenin/F-actin and zonula occludens (ZO)-1/F-actin. Our study did not reveal any alterations in EA.hy926 cell line survival following treatment with nornicotine. However, nornicotine exerted disparate effects on cell migration and led to changes in both the ultrastructure and organization of cell-cell junctional complexes and F-actin. Moreover, the cell migration observed in the experiments performed in the present work negatively correlated with the number of Weibel-Palade bodies seen through transmission electron microscopy (TEM). Moreover, the mechanism of cell migration promotion was VEGF-independent, and the decrease in the number of Weibel-Palade bodies resulted from nornicotine-induced F-actin depolymerization. In conclusion, the present study demonstrated that low concentrations of nornicotine do not affect cell survival, but promote cell movement and impair adherens junctions through changes in F-actin organization. Our results indicate for the first time the effect of nornicotine on endothelial EA.hy926 cells and suggest that nornicotine may induce transmigration pathways and, consequently, facilitate the transendothelial migration of monocytes associated with atherosclerosis

    IUPAC-NIST solubility data series. 81. Hydrocarbons with water and seawater - Revised and updated. Part 8. C9 hydrocarbons with water

    Get PDF
    The mutual solubility and related liquid-liquid equilibria of C9 hydrocarbons with water are exhaustively and critically reviewed. Reports of the experimental determination of solubility in 18 chemically distinct binary systems that appeared in the primary literature prior to the end of 2002 are compiled. For 8 systems, sufficient data are available to allow critical evaluation. All data are expressed as mass percent and mole fraction, as well as the originally reported units. In addition to the standard evaluation criteria used throughout the Solubility Date Series, a new method based on the evaluation of the all experimental data for a given homologous series of aliphatic and aromatic hydrocarbons was used

    Thiol-Reactive PODS-Bearing Bifunctional Chelators for the Development of EGFR-Targeting [<sup>18</sup>F]AlF-Affibody Conjugates.

    Get PDF
    Site-selective bioconjugation of cysteine-containing peptides and proteins is currently achieved via a maleimide-thiol reaction (Michael addition). When maleimide-functionalized chelators are used and the resulting bioconjugates are subsequently radiolabeled, instability has been observed both during radiosynthesis and post-injection in vivo, reducing radiochemical yield and negatively impacting performance. Recently, a phenyloxadiazolyl methylsulfone derivative (PODS) was proposed as an alternative to maleimide for the site-selective conjugation and radiolabeling of proteins, demonstrating improved in vitro stability and in vivo performance. Therefore, we have synthesized two novel PODS-bearing bifunctional chelators (NOTA-PODS and NODAGA-PODS) and attached them to the EGFR-targeting affibody molecule ZEGFR:03115. After radiolabeling with the aluminum fluoride complex ([18F]AlF), both conjugates showed good stability in murine serum. When injected in high EGFR-expressing tumor-bearing mice, [18F]AlF-NOTA-PODS-ZEGFR:03115 and [18F]AlF-NODAGA-PODS-ZEGFR:03115 showed similar pharmacokinetics and a specific tumor uptake of 14.1 ± 5.3% and 16.7 ± 4.5% ID/g at 1 h post-injection, respectively. The current results are encouraging for using PODS as an alternative to maleimide-based thiol-selective bioconjugation reactions

    IUPAC-NIST solubility data series. 81. Hydrocarbons with water and seawater-revised and updated. Part 5. C7 hydrocarbons with water and heavy water

    Get PDF
    The mutual solubility and related liquid-liquid equilibria of C7 hydrocarbons with water and heavy water are exhaustively and critically reviewed. Reports of experimental determination of solubility in 23 chemically distinct binary systems that appeared in the primary literature prior to end of 2002 are compiled. For 9 systems sufficient data are available to allow critical evaluation. All data are expressed as mass percent and mole fraction as well as the originally reported units. In addition to the standard evaluation criteria used throughout the Solubility Data Series, a new method based on the evaluation of the all experimental data for a given homologous series of aliphatic and aromatic hydrocarbons was used

    Influence of quorum sensing signal molecules on biofilm formation in Proteus mirabilis O18

    Get PDF
    The influence of basis of quorum sensing molecules on Proteus strains is much less known as compared to Pseudomonas or Escherichia. We have previously shown that a series of acylated homoserine lactones (acyl-HSL) does not influence the ureolytic, proteolytic, or hemolytic abilities, and that the swarming motility of Proteus mirabilis rods is strain specific. The aim of the presented study was to find out if the presence of a series of acyl-HSL influences biofilm formation of P. mirabilis laboratory strain belonging to O18 serogroup. This serogroup is characterized by the presence of a unique non-carbohydrate component, namely phosphocholine. Escherichia coli and P. mirabilis O18 strains used in this work contains cloned plasmids encoding fluorescent protein genes with constitutive gene expression. In mixed biofilms in stationary and continuous flow conditions, P. mirabilis O18 overgrow whole culture. P. mirabilis O18 strain has genetically proved a presence of AI–2 quorum sensing system. Differences in biofilm structure were observed depending on the biofilm type and culture methods. From tested acylated homoserine lactones (BHL, HHL, OHL, DHL, dDHL, tDHL), a significant influence had BHL on thickness, structure, and the amount of exopolysaccharides produced by biofilms formed by P. mirabilis O18 pDsRed2

    Transcriptional diversity during lineage commitment of human blood progenitors.

    Get PDF
    Blood cells derive from hematopoietic stem cells through stepwise fating events. To characterize gene expression programs driving lineage choice, we sequenced RNA from eight primary human hematopoietic progenitor populations representing the major myeloid commitment stages and the main lymphoid stage. We identified extensive cell type-specific expression changes: 6711 genes and 10,724 transcripts, enriched in non-protein-coding elements at early stages of differentiation. In addition, we found 7881 novel splice junctions and 2301 differentially used alternative splicing events, enriched in genes involved in regulatory processes. We demonstrated experimentally cell-specific isoform usage, identifying nuclear factor I/B (NFIB) as a regulator of megakaryocyte maturation-the platelet precursor. Our data highlight the complexity of fating events in closely related progenitor populations, the understanding of which is essential for the advancement of transplantation and regenerative medicine.The work described in this article was primarily supported by the European Commission Seventh Framework Program through the BLUEPRINT grant with code HEALTH-F5-2011-282510 (D.H., F.B., G.C., J.H.A.M., K.D., L.C., M.F., S.C., S.F., and S.P.G.). Research in the Ouwehand laboratory is further supported by program grants from the National Institute for Health Research (NIHR, www.nihr.ac.uk; to A.A., M.K., P.P., S.B.G.J., S.N., and W.H.O.) and the British Heart Foundation under nos. RP-PG-0310-1002 and RG/09/12/28096 (www.bhf.org.uk; to A.R. and W.J.A.). K.F. and M.K. were supported by Marie Curie funding from the NETSIM FP7 program funded by the European Commission. The laboratory receives funding from the NHS Blood and Transplant for facilities. The Cambridge BioResource (www.cambridgebioresource.org.uk), the Cell Phenotyping Hub, and the Cambridge Translational GenOmics laboratory (www.catgo.org.uk) are supported by an NIHR grant to the Cambridge NIHR Biomedical Research Centre (BRC). The BRIDGE-Bleeding and Platelet Disorders Consortium is supported by the NIHR BioResource—Rare Diseases (http://bioresource.nihr.ac.uk/; to E.T., N.F., and Whole Exome Sequencing effort). Research in the Soranzo laboratory (L.V., N.S., and S. Watt) is further supported by the Wellcome Trust (Grant Codes WT098051 and WT091310) and the EU FP7 EPIGENESYS initiative (Grant Code 257082). Research in the Cvejic laboratory (A. Cvejic and C.L.) is funded by the Cancer Research UK under grant no. C45041/A14953. S.J.S. is funded by NIHR. M.E.F. is supported by a British Heart Foundation Clinical Research Training Fellowship, no. FS/12/27/29405. E.B.-M. is supported by a Wellcome Trust grant, no. 084183/Z/07/Z. Research in the Laffan laboratory is supported by Imperial College BRC. F.A.C., C.L., and S. Westbury are supported by Medical Research Council Clinical Training Fellowships, and T.B. by a British Society of Haematology/NHS Blood and Transplant grant. R.J.R. is a Principal Research Fellow of the Wellcome Trust, grant no. 082961/Z/07/Z. Research in the Flicek laboratory is also supported by the Wellcome Trust (grant no. 095908) and EMBL. Research in the Bertone laboratory is supported by EMBL. K.F. and C.v.G. are supported by FWO-Vlaanderen through grant G.0B17.13N. P.F. is a compensated member of the Omicia Inc. Scientific Advisory Board. This study made use of data generated by the UK10K Consortium, derived from samples from the Cohorts arm of the project.This is the author’s version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science on 26/9/14 in volume 345, number 6204, DOI: 10.1126/science.1251033. This version will be under embargo until the 26th of March 2015

    Vapor-Liquid Equilibrium of the Mixture C5H5N + C9H20 (LB4677, EVLM 1131)

    No full text
    corecore