1,553 research outputs found
Evolution of an Interprofessional Patient Skills Course with the Incorporation of Simulation Scenarios
A university level interprofessional patient care skills course including Nursing, Radiologic Sciences, and Respiratory Care students has evolved over 20 years. The course includes a lecture and laboratory portion with specific content and skills focused on principles common to the three disciplines. Students are placed in interprofessional groups during lab to practice and learn together including a simulation scenario on each week’s content. This educational strategy has enhanced the students’ teamwork and communication skills and prepared them to apply these skills to clinical practice. Further research is needed to look at IPE undergraduate healthcare course outcomes related to teamwork
CSM Testbed Development and Large-Scale Structural Applications
A research activity called Computational Structural Mechanics (CSM) conducted at the NASA Langley Research Center is described. This activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM Testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM Testbed methods development environment is presented and some new numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized
A parabolic approach to the control of opinion spreading
We analyze the problem of controlling to consensus a nonlinear system
modeling opinion spreading. We derive explicit exponential estimates on the
cost of approximately controlling these systems to consensus, as a function of
the number of agents N and the control time-horizon T. Our strategy makes use
of known results on the controllability of spatially discretized semilinear
parabolic equations. Both systems can be linked through time-rescalin
The performance of high voltage; outdoor insulation in polluted environments
"An iron wire, 12000 feet in length, was suspended about five feet from the ground by silk cords; one end of it was connected to the globe of an electrical machine, and at the other a lead ball was hung in order to perceive when the matter reached it. After five or six turns of the wheel, the matter had passed along the whole wire and communicated its virtue to the ball, which instantly attracted and repelled light bodies. 2. As this ball was equally electrified with every part of the wire, it is probable that the electric matter would instantly pervade a wire of a still greater length, provided we had a proper apparatus for the purpose. 3. Several metals and other conductors were substituted in place of the ball, and all received the electricity in the same manner. The ball and touched with other non-conductors, :when' the finger, gave a luminous spark and as smart a shock as when the end of the wire next to 'the 'gTobe·vas touched. All these effects instantly ceased whenever .. any person not electrified touched any part of the wire and commenced again a few seconds after his hand was withdrawn. The same effects are produced, though with more difficultly, when hair or woollen ropes were substituted in place of the silk ones: But they were entirely stopped by hemp ropes or when the silk ones were wetted.
Art Therapy as an Intervention and Its Effects on Anxiety and Depression
There is a prevalence in the United States, as well as other countries, of individuals of all age ranges suffering from negative mental health issues, including anxiety and depression. Previous studies have shown that using art therapy as an intervention could help improve both anxiety and depression outcomes. This research examines different art therapy techniques, as well as combined interventions, and how different approaches can help improve anxiety and depression scores based on the self-reported Spielberger’s State-Trait Anxiety Inventory (STAI), the Beck Depression Inventory (BDI) tests, and a variety of other self-report assessment tests
Individualization as driving force of clustering phenomena in humans
One of the most intriguing dynamics in biological systems is the emergence of
clustering, the self-organization into separated agglomerations of individuals.
Several theories have been developed to explain clustering in, for instance,
multi-cellular organisms, ant colonies, bee hives, flocks of birds, schools of
fish, and animal herds. A persistent puzzle, however, is clustering of opinions
in human populations. The puzzle is particularly pressing if opinions vary
continuously, such as the degree to which citizens are in favor of or against a
vaccination program. Existing opinion formation models suggest that
"monoculture" is unavoidable in the long run, unless subsets of the population
are perfectly separated from each other. Yet, social diversity is a robust
empirical phenomenon, although perfect separation is hardly possible in an
increasingly connected world. Considering randomness did not overcome the
theoretical shortcomings so far. Small perturbations of individual opinions
trigger social influence cascades that inevitably lead to monoculture, while
larger noise disrupts opinion clusters and results in rampant individualism
without any social structure. Our solution of the puzzle builds on recent
empirical research, combining the integrative tendencies of social influence
with the disintegrative effects of individualization. A key element of the new
computational model is an adaptive kind of noise. We conduct simulation
experiments to demonstrate that with this kind of noise, a third phase besides
individualism and monoculture becomes possible, characterized by the formation
of metastable clusters with diversity between and consensus within clusters.
When clusters are small, individualization tendencies are too weak to prohibit
a fusion of clusters. When clusters grow too large, however, individualization
increases in strength, which promotes their splitting.Comment: 12 pages, 4 figure
Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach
Cooperation is of utmost importance to society as a whole, but is often
challenged by individual self-interests. While game theory has studied this
problem extensively, there is little work on interactions within and across
groups with different preferences or beliefs. Yet, people from different social
or cultural backgrounds often meet and interact. This can yield conflict, since
behavior that is considered cooperative by one population might be perceived as
non-cooperative from the viewpoint of another.
To understand the dynamics and outcome of the competitive interactions within
and between groups, we study game-dynamical replicator equations for multiple
populations with incompatible interests and different power (be this due to
different population sizes, material resources, social capital, or other
factors). These equations allow us to address various important questions: For
example, can cooperation in the prisoner's dilemma be promoted, when two
interacting groups have different preferences? Under what conditions can costly
punishment, or other mechanisms, foster the evolution of norms? When does
cooperation fail, leading to antagonistic behavior, conflict, or even
revolutions? And what incentives are needed to reach peaceful agreements
between groups with conflicting interests?
Our detailed quantitative analysis reveals a large variety of interesting
results, which are relevant for society, law and economics, and have
implications for the evolution of language and culture as well
Anomalous metamagnetism in the low carrier density Kondo lattice YbRh3Si7
We report complex metamagnetic transitions in single crystals of the new low
carrier Kondo antiferromagnet YbRh3Si7. Electrical transport, magnetization,
and specific heat measurements reveal antiferromagnetic order at T_N = 7.5 K.
Neutron diffraction measurements show that the magnetic ground state of
YbRh3Si7 is a collinear antiferromagnet where the moments are aligned in the ab
plane. With such an ordered state, no metamagnetic transitions are expected
when a magnetic field is applied along the c axis. It is therefore surprising
that high field magnetization, torque, and resistivity measurements with H||c
reveal two metamagnetic transitions at mu_0H_1 = 6.7 T and mu_0H_2 = 21 T. When
the field is tilted away from the c axis, towards the ab plane, both
metamagnetic transitions are shifted to higher fields. The first metamagnetic
transition leads to an abrupt increase in the electrical resistivity, while the
second transition is accompanied by a dramatic reduction in the electrical
resistivity. Thus, the magnetic and electronic degrees of freedom in YbRh3Si7
are strongly coupled. We discuss the origin of the anomalous metamagnetism and
conclude that it is related to competition between crystal electric field
anisotropy and anisotropic exchange interactions.Comment: 23 pages and 4 figures in the main text. 7 pages and 5 figures in the
supplementary materia
Harriet E. Macy Gearey Diary
Transcription of Harriet Gearey's diary of 1873 done by Mary Carol Judge in 2008, together with photocopy of original diary pages, compiled in spiral-bound volume. In addition to the diary, includes biographical information and reproduced photographs of the extended Gearey family, including her son Edward C. Gearey and grandson Hamilton W. Gearey, both of Fargo, N.D.; Slack family history, by Hattie Gearey Slack; descendants and ancestors of Aaron Macy (1789-1842) of Hudson, New York; text excerpts of her other diaries (1872, 1875, 1879, 1880, 1883) that were sold on e-Bay
- …
