2,835 research outputs found
Will the Affordable Care Act Move Patient-Centeredness to Center Stage?
Outlines the evolution of ethical, economic, and clinical concepts of the patient's role in health care; efforts to develop a measurement infrastructure; and provisions in the healthcare reform law aimed at integrating and aligning measures
Cepheid Variables in the Maser-Host Galaxy NGC 4258
We present results of a ground-based survey for Cepheid variables in NGC
4258. This galaxy plays a key role in the Extragalactic Distance Scale due to
its very precise and accurate distance determination via VLBI observations of
water masers. We imaged two fields within this galaxy using the Gemini North
telescope and GMOS, obtaining 16 epochs of data in the SDSS gri bands over 4
years. We carried out PSF photometry and detected 94 Cepheids with periods
between 7 and 127 days, as well as an additional 215 variables which may be
Cepheids or Population II pulsators. We used the Cepheid sample to test the
absolute calibration of theoretical gri Period-Luminosity relations and found
good agreement with the maser distance to this galaxy. The expected data
products from the Large Synoptic Survey Telescope (LSST) should enable Cepheid
searches out to at least 10 Mpc.Comment: Accepted for publication in the Astronomical Journa
Neutrino Masses and Mixings from String Theory Instantons
We study possible patterns of neutrino masses and mixings in string models in
which Majorana neutrino masses are generated by a certain class of string
theory instantons recently considered in the literature. These instantons may
generate either directly the dim=5 Weinberg operator or right-handed neutrino
Majorana masses, both with a certain flavour-factorised form. A hierarchy of
neutrino masses naturally appears from the exponentially suppressed
contributions of different instantons. The flavour structure is controlled by
string amplitudes involving neutrino fields and charged instanton zero modes.
For some simple choices for these amplitudes one finds neutrino mixing patterns
consistent with experimental results. In particular, we find that a
tri-bimaximal mixing pattern is obtained for simple symmetric values of the
string correlators.Comment: 24 pages, 2 figure
Social distancing strategies against disease spreading
The recurrent infectious diseases and their increasing impact on the society
has promoted the study of strategies to slow down the epidemic spreading. In
this review we outline the applications of percolation theory to describe
strategies against epidemic spreading on complex networks. We give a general
outlook of the relation between link percolation and the
susceptible-infected-recovered model, and introduce the node void percolation
process to describe the dilution of the network composed by healthy individual,
, the network that sustain the functionality of a society. Then, we survey
two strategies: the quenched disorder strategy where an heterogeneous
distribution of contact intensities is induced in society, and the intermittent
social distancing strategy where health individuals are persuaded to avoid
contact with their neighbors for intermittent periods of time. Using
percolation tools, we show that both strategies may halt the epidemic
spreading. Finally, we discuss the role of the transmissibility, , the
effective probability to transmit a disease, on the performance of the
strategies to slow down the epidemic spreading.Comment: to be published in "Perspectives and Challenges in Statistical
Physics and Complex Systems for the Next Decade", Word Scientific Pres
Recent laboratory tests of a hard x-ray solar flare polarimeter
We report on the development of a Compton scatter polarimeter for measuring the linear polarization of hard X-rays (50 - 300 keV) from solar flares. Such measurements would be useful for studying the directivity (or beaming) of the electrons that are accelerated in solar flares. We initially used a simple prototype polarimeter to successfully demonstrate the reliability of our Monte Carlo simulation code and to demonstrate our ability to generate a polarized photon source in the lab. We have recently fabricated a science model based on a modular design concept that places a self-contained polarimeter module on the front-end of a 5-inch position- sensitive PMT (PSPMT). The PSPMT is used to determine the Compton interaction location within an annular array of small plastic scintillator elements. Some of the photons that scatter within the plastic scintillator array are subsequently absorbed by a small centrally-located array of CsI(Tl) crystals that is read out by an independent multi-anode PMT. The independence of the two PMT readout schemes provides appropriate timing information for event triggering. We are currently testing this new polarimeter design in the laboratory to evaluate the performance characteristics of this design. Here we present the initial results from these laboratory tests. The modular nature of this design lends itself toward its accommodation on a balloon or spacecraft platform. A small array of such modules can provide a minimum detectable polarization (MDP) of less than 1% in the integrated 50 - 300 keV energy range for X-class solar flares
The Development of GRAPE, a Gamma Ray Polarimeter Experiment
The measurement of hard X‐ray polarization in γ‐ray bursts (GRBs) would add yet another piece of information in our effort to resolve the true nature of these enigmatic objects. Here we report on the development of a dedicated polarimeter design with a relatively large FoV that is capable of studying hard X‐ray polarization (50–300 keV) from GRBs. This compact design, based on the use of a large area position‐sensitive PMT (PSPMT), is referred to as GRAPE (Gamma‐RAy Polarimeter Experiment). The feature of GRAPE that is especially attractive for studies of GRBs is the significant off‐axis polarization response (at angles greater than 60°). For an array of GRAPE modules, current sensitivity estimates give minimum detectable polarization (MDP) levels of a few percent for the brightest GRBs
Hard x-ray polarimeter for gamma-ray bursts and solar flares
We report on the development of a dedicated polarimeter design that is capable of studying the linear polarization of hard X-rays (50-300 keV) from gamma-ray bursts and solar flares. This compact design, based on the use of a large area position-sensitive PMT (PSPMT), is referred to as GRAPE (Gamma-RAy Polarimeter Experiment). The PSPMT is used to determine the Compton interaction location within an array of small plastic scintillator elements. Some of the photons that scatter within the plastic scintillator array are subsequently absorbed by a small centrally-located array of CsI(Tl) crystals that is read out by an independent multi-anode PMT. One feature of GRAPE that is especially attractive for studies of gamma-ray bursts is the significant off-axis response (at angles \u3e 60 degrees). The modular nature of this design lends itself toward its accomodation on a balloon or spacecraft platform. For an array of GRAPE modules, sensitivity levels below a few percent can be achieved for both gamma-ray bursts and solar flares. Here we report on the latest results from the testing of a laboratory science model
Dedicated polarimeter design for hard x-ray and soft gamma-ray astronomy
We have developed a modular design for a hard X-ray and soft gamma-ray polrimeter that we call GRAPE (Gamma RAy Polarimeter Experiment). Optimized for the energy range of 50-300 keV, the GRAPE design is a Compton polarimeter based on the use of an array of plastic scintillator scattering elements in conjunction with a centrally positioned high-Z calorimeter detector. Here we shall review the results from a laboratory model of the baseline GRAPE design. The baseline design uses a 5-inch diameter position sensitive PMT (PSPMT) for readout of the plastic scintillator array and a small array of CsI detectors for measurement of the scattered photon. An improved design, based on the use of large area multi-anode PMTs (MAPMTs), is also discussed along with plans for laboratory testing of a prototype. An array of GRAPE modules could be used as the basis for a dedicated science mission, either on a long duration balloon or on an orbital mission. With a large effective FoV, a non-imaging GRAPE mission would be ideal for studying polarization in transient sources (gamma ray bursts and solar flares). It may also prove useful for studying periodically varying sources, such as pulsars. An imaging system would improve the sensitivity of the polarization measurements for transient and periodic sources and may also permit the measurement of polarization in steady-state sources
- …