4,009 research outputs found

    A model to map levelised cost of energy for wave energy projects

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.An economic model has been developed which allows the spatial dependence of wave energy levelised cost of energy (LCOE) to be calculated and mapped in graphical information system (GIS) software. Calculation is performed across a domain of points which define hindcast wave data; these data are obtained from wave propagation models like Simulating WAves Nearshore (SWAN). Time series of metocean data are interpolated across a device power matrix, obtaining energy production at every location. Spatial costs are calculated using Dijkstra's algorithm, to find distances between points from which costs are inferred. These include the export cable and operations, the latter also calculated by statistically estimating weather window waiting time. A case study is presented, considering the Scottish Western Isles and using real data from a device developer. Results indicate that, for the small scale device examined, the lowest LCOE hotspots occur in the Minches. This area is relatively sheltered, showing that performance is device specific and does not always correspond to the areas of highest energy resource. Sensitivity studies are performed, examining the effects of cut-in and cut-out significant wave height on LCOE, and month on installation cost. The results show that the impact of these parameters is highly location-specific.The authors wish to thank Albatern Ltd, the industrial partner of the research project, for their funding and support in sponsoring the lead author. In addition, the Energy Technology Institute (ETI) and Research Councils UK Energy Programme who have funded this research through the IDCORE programme (grant number: EP/J500847/1)

    Seeing with sound? Exploring different characteristics of a visual-to-auditory sensory substitution device

    Get PDF
    Sensory substitution devices convert live visual images into auditory signals, for example with a web camera (to record the images), a computer (to perform the conversion) and headphones (to listen to the sounds). In a series of three experiments, the performance of one such device (‘The vOICe’) was assessed under various conditions on blindfolded sighted participants. The main task that we used involved identifying and locating objects placed on a table by holding a webcam (like a flashlight) or wearing it on the head (like a miner’s light). Identifying objects on a table was easier with a hand-held device, but locating the objects was easier with a head-mounted device. Brightness converted into loudness was less effective than the reverse contrast (dark being loud), suggesting that performance under these conditions (natural indoor lighting, novice users) is related more to the properties of the auditory signal (ie the amount of noise in it) than the cross-modal association between loudness and brightness. Individual differences in musical memory (detecting pitch changes in two sequences of notes) was related to the time taken to identify or recognise objects, but individual differences in self-reported vividness of visual imagery did not reliably predict performance across the experiments. In general, the results suggest that the auditory characteristics of the device may be more important for initial learning than visual associations

    Tonic inhibition of accumbal spiny neurons by extrasynaptic 4 GABAA receptors modulates the actions of psychostimulants

    Get PDF
    Within the nucleus accumbens (NAc), synaptic GABAA receptors (GABAARs) mediate phasic inhibition of medium spiny neurons (MSNs) and influence behavioral responses to cocaine. We demonstrate that both dopamine D1- and D2-receptor-expressing MSNs (D-MSNs) additionally harbor extrasynaptic GABAARs incorporating α4, ÎČ, and ÎŽ subunits that mediate tonic inhibition, thereby influencing neuronal excitability. Both the selective ÎŽ-GABAAR agonist THIP and DS2, a selective positive allosteric modulator, greatly increased the tonic current of all MSNs from wild-type (WT), but not from ή−/− or α4−/− mice. Coupling dopamine and tonic inhibition, the acute activation of D1 receptors (by a selective agonist or indirectly by amphetamine) greatly enhanced tonic inhibition in D1-MSNs but not D2-MSNs. In contrast, prolonged D2 receptor activation modestly reduced the tonic conductance of D2-MSNs. Behaviorally, WT and constitutive α4−/− mice did not differ in their expression of cocaine-conditioned place preference (CPP). Importantly, however, mice with the α4 deletion specific to D1-expressing neurons (α4D1−/−) showed increased CPP. Furthermore, THIP administered systemically or directly into the NAc of WT, but not α4−/− or α4D1−/− mice, blocked cocaine enhancement of CPP. In comparison, α4D2−/− mice exhibited normal CPP, but no cocaine enhancement. In conclusion, dopamine modulation of GABAergic tonic inhibition of D1- and D2-MSNs provides an intrinsic mechanism to differentially affect their excitability in response to psychostimulants and thereby influence their ability to potentiate conditioned reward. Therefore, α4ÎČÎŽ GABAARs may represent a viable target for the development of novel therapeutics to better understand and influence addictive behaviors

    Quantitative localized proton-promoted dissolution kinetics of calcite using scanning electrochemical microscopy (SECM)

    Get PDF
    Scanning electrochemical microscopy (SECM) has been used to determine quantitatively the kinetics of proton-promoted dissolution of the calcite (101̅4) cleavage surface (from natural “Iceland Spar”) at the microscopic scale. By working under conditions where the probe size is much less than the characteristic dislocation spacing (as revealed from etching), it has been possible to measure kinetics mainly in regions of the surface which are free from dislocations, for the first time. To clearly reveal the locations of measurements, studies focused on cleaved “mirror” surfaces, where one of the two faces produced by cleavage was etched freely to reveal defects intersecting the surface, while the other (mirror) face was etched locally (and quantitatively) using SECM to generate high proton fluxes with a 25 ÎŒm diameter Pt disk ultramicroelectrode (UME) positioned at a defined (known) distance from a crystal surface. The etch pits formed at various etch times were measured using white light interferometry to ascertain pit dimensions. To determine quantitative dissolution kinetics, a moving boundary finite element model was formulated in which experimental time-dependent pit expansion data formed the input for simulations, from which solution and interfacial concentrations of key chemical species, and interfacial fluxes, could then be determined and visualized. This novel analysis allowed the rate constant for proton attack on calcite, and the order of the reaction with respect to the interfacial proton concentration, to be determined unambiguously. The process was found to be first order in terms of interfacial proton concentration with a rate constant k = 6.3 (± 1.3) × 10–4 m s–1. Significantly, this value is similar to previous macroscopic rate measurements of calcite dissolution which averaged over large areas and many dislocation sites, and where such sites provided a continuous source of steps for dissolution. Since the local measurements reported herein are mainly made in regions without dislocations, this study demonstrates that dislocations and steps that arise from such sites are not needed for fast proton-promoted calcite dissolution. Other sites, such as point defects, which are naturally abundant in calcite, are likely to be key reaction sites

    Ambiguous figures and the content of experience

    Get PDF
    Representationalism is the position that the phenomenal character of an experience is either identical with, or supervenes on, the content of that experience. Many representationalists hold that the relevant content of experience is nonconceptual. I propose a counterexample to this form of representationalism that arises from the phenomenon of Gestalt switching, which occurs when viewing ambiguous figures. First, I argue that one does not need to appeal to the conceptual content of experience or to judgements to account for Gestalt switching. I then argue that experiences of certain ambiguous figures are problematic because they have different phenomenal characters but that no difference in the nonconceptual content of these experiences can be identified. I consider three solutions to this problem that have been proposed by both philosophers and psychologists and conclude that none can account for all the ambiguous figures that pose the problem. I conclude that the onus is on representationalists to specify the relevant difference in content or to abandon their position

    Charged Vacuum Bubble Stability

    Get PDF
    A type of scenario is considered where electrically charged vacuum bubbles, formed from degenerate or nearly degenerate vacuua separated by a thin domain wall, are cosmologically produced due to the breaking of a discrete symmetry, with the bubble charge arising from fermions residing within the domain wall. Stability issues associated with wall tension, fermion gas, and Coulombic effects for such configurations are examined. The stability of a bubble depends upon parameters such as the symmetry breaking scale and the fermion coupling. A dominance of either the Fermi gas or the Coulomb contribution may be realized under certain conditions, depending upon parameter values.Comment: 16 pages,revtex; accepted for publication in Phys.Rev.

    Drive time to cardiac rehabilitation: at what point does it affect utilization?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A 30 minute drive time threshold has often been cited as indicative of accessible health services. Cardiac rehabilitation (CR) is a chronic disease management program designed to enhance and maintain cardiovascular health, and geographic barriers to utilization are often cited. The purpose of this study was to empirically test the drive time threshold for CR utilization.</p> <p>Methods</p> <p>A prospective study, using a multi-level design of coronary artery disease outpatients nested within 97 cardiologists. Participants completed a baseline sociodemographic survey, and reported CR referral, enrollment and participation in a second survey 9 months later. CR utilization was verified with CR sites. Geographic information systems were used to generate drive times at 60, 80 and 100% of the speed limit to the closest CR site from participants' homes, to take into consideration various traffic conditions. Bivariate analysis was used to test for differences in CR referral, enrollment and degree of participation by drive time. Logistic regression was used to test drive time increments where significant differences were found.</p> <p>Results</p> <p>Drive times were generated for 1209 outpatients. Overall, CR referral was verified for 523 (43.3%) outpatients, with verified enrollment for 444 (36.7%) participating in a mean of 86.4 ± 25.7% of prescribed sessions. There were significant differences in CR referral and enrollment by drive time (ps < .01), but not degree of participation. Logistic regression analysis (ps < .001) revealed that the drive time threshold at 80% of the posted speed limit for physician referral may be 60 minutes (OR = .26, 95% CI: 0.13-0.55), and the threshold for patient CR enrollment may also be 60 minutes (OR = .11, 95% CI: 0.04-0.33).</p> <p>Conclusions</p> <p>Physicians may be taking geography into consideration when referring patients to CR. Empirical consideration also reveals that patients are significantly less likely to enroll in CR where they must drive 60 minutes or more to the closest program. Once enrolled, distance has no significant effect on degree of participation.</p

    Design, Implementation and First Measurements with the Medipix Neutron Camera in CMS

    Full text link
    The Medipix detector is the first device dedicated to measuring mixed-field radiation in the CMS cavern and able to distinguish between different particle types. Medipix2-MXR chips bump bonded to silicon sensors with various neutron conversion layers developed by the IEAP CTU in Prague were successfully installed for the 2008 LHC start-up in the CMS experimental and services caverns to measure the flux of various particle types, in particular neutrons. They have operated almost continuously during the 2010 run period, and the results shown here are from the proton run between the beginning of July and the end of October 2010. Clear signals are seen and different particle types have been observed during regular LHC luminosity running, and an agreement in the measured flux rate is found with the simulations. These initial results are promising, and indicate that these devices have the potential for further and future LHC and high energy physics applications as radiation monitoring devices for mixed field environments, including neutron flux monitoring. Further extensions are foreseen in the near future to increase the performance of the detector and its coverage for monitoring in CMS.Comment: 15 pages, 16 figures, submitted to JINS
    • 

    corecore