1,045 research outputs found
Impact of boundaries on velocity profiles in bubble rafts
Under conditions of sufficiently slow flow, foams, colloids, granular matter,
and various pastes have been observed to exhibit shear localization, i.e.
regions of flow coexisting with regions of solid-like behavior. The details of
such shear localization can vary depending on the system being studied. A
number of the systems of interest are confined so as to be quasi-two
dimensional, and an important issue in these systems is the role of the
confining boundaries. For foams, three basic systems have been studied with
very different boundary conditions: Hele-Shaw cells (bubbles confined between
two solid plates); bubble rafts (a single layer of bubbles freely floating on a
surface of water); and confined bubble rafts (bubbles confined between the
surface of water below and a glass plate on top). Often, it is assumed that the
impact of the boundaries is not significant in the ``quasi-static limit'', i.e.
when externally imposed rates of strain are sufficiently smaller than internal
kinematic relaxation times. In this paper, we directly test this assumption for
rates of strain ranging from to . This
corresponds to the quoted quasi-static limit in a number of previous
experiments. It is found that the top plate dramatically alters both the
velocity profile and the distribution of nonlinear rearrangements, even at
these slow rates of strain.Comment: New figures added, revised version accepted for publication in Phys.
Rev.
Flow transitions in two-dimensional foams
For sufficiently slow rates of strain, flowing foam can exhibit inhomogeneous
flows. The nature of these flows is an area of active study in both
two-dimensional model foams and three dimensional foam. Recent work in
three-dimensional foam has identified three distinct regimes of flow [S. Rodts,
J. C. Baudez, and P. Coussot, Europhys. Lett. {\bf 69}, 636 (2005)]. Two of
these regimes are identified with continuum behavior (full flow and
shear-banding), and the third regime is identified as a discrete regime
exhibiting extreme localization. In this paper, the discrete regime is studied
in more detail using a model two dimensional foam: a bubble raft. We
characterize the behavior of the bubble raft subjected to a constant rate of
strain as a function of time, system size, and applied rate of strain. We
observe localized flow that is consistent with the coexistence of a power-law
fluid with rigid body rotation. As a function of applied rate of strain, there
is a transition from a continuum description of the flow to discrete flow when
the thickness of the flow region is approximately 10 bubbles. This occurs at an
applied rotation rate of approximately
Viscoelastic shear banding in foam
Shear banding is an important feature of flow in complex fluids. Essentially,
shear bands refer to the coexistence of flowing and non-flowing regions in
driven material. Understanding the possible sources of shear banding has
important implications for a wide range of flow applications. In this regard,
quasi-two dimensional flow offers a unique opportunity to study competing
factors that result in shear bands. One proposal is the competition between
intrinsic dissipation and an external source of dissipation. In this paper, we
report on the experimental observation of the transition between different
classes of shear-bands that have been predicted to exist in cylindrical
geometry as the result of this competition [R. J. Clancy, E. Janiaud, D.
Weaire, and S. Hutzlet, Eur. J. Phys. E, {\bf 21}, 123 (2006)]
A compact 90 kilowatt electric heat source for heating inert gases to 1700 F
Design and fabrication of compact electric heat source for heating inert gase
The electrorheology of suspensions consisting of Na-Fluorohectorite synthetic clay particles in silicon oil
Under application of an electric field greater than a triggering electric
field kV/mm, suspensions obtained by dispersing particles of the
synthetic clay fluoro-hectorite in a silicon oil, aggregate into chain- and/or
column-like structures parallel to the applied electric field. This
micro-structuring results in a transition in the suspensions' rheological
behavior, from a Newtonian-like behavior to a shear-thinning rheology with a
significant yield stress. This behavior is studied as a function of particle
volume fraction and strength of the applied electric field, . The steady
shear flow curves are observed to scale onto a master curve with respect to
, in a manner similar to what was recently found for suspensions of laponite
clay [42]. In the case of Na-fluorohectorite, the corresponding dynamic yield
stress is demonstrated to scale with respect to as a power law with an
exponent , while the static yield stress inferred from
constant shear stress tests exhibits a similar behavior with . The suspensions are also studied in the framework of thixotropic fluids:
the bifurcation in the rheology behavior when letting the system flow and
evolve under a constant applied shear stress is characterized, and a
bifurcation yield stress, estimated as the applied shear stress at which
viscosity bifurcation occurs, is measured to scale as with to 0.6. All measured yield stresses increase with the particle
fraction of the suspension. For the static yield stress, a scaling law
, with , is found. The results are found to be
reasonably consistent with each other. Their similarities with-, and
discrepancies to- results obtained on laponite-oil suspensions are discussed
Statistics of Bubble Rearrangements in a Slowly Sheared Two-dimensional Foam
Many physical systems exhibit plastic flow when subjected to slow steady
shear. A unified picture of plastic flow is still lacking; however, there is an
emerging theoretical understanding of such flows based on irreversible motions
of the constituent ``particles'' of the material. Depending on the specific
system, various irreversible events have been studied, such as T1 events in
foam and shear transformation zones (STZ's) in amorphous solids. This paper
presents an experimental study of the T1 events in a model, two-dimensional
foam: bubble rafts. In particular, I report on the connection between the
distribution of T1 events and the behavior of the average stress and average
velocity profiles during both the initial elastic response of the bubble raft
and the subsequent plastic flow at sufficiently high strains
Interplay of internal stresses, electric stresses and surface diffusion in polymer films
We investigate two destabilization mechanisms for elastic polymer films and
put them into a general framework: first, instabilities due to in-plane stress
and second due to an externally applied electric field normal to the film's
free surface. As shown recently, polymer films are often stressed due to
out-of-equilibrium fabrication processes as e.g. spin coating. Via an
Asaro-Tiller-Grinfeld mechanism as known from solids, the system can decrease
its energy by undulating its surface by surface diffusion of polymers and
thereby relaxing stresses. On the other hand, application of an electric field
is widely used experimentally to structure thin films: when the electric
Maxwell surface stress overcomes surface tension and elastic restoring forces,
the system undulates with a wavelength determined by the film thickness. We
develop a theory taking into account both mechanisms simultaneously and discuss
their interplay and the effects of the boundary conditions both at the
substrate and the free surface.Comment: 14 pages, 7 figures, 1 tabl
Velocity Profiles in Slowly Sheared Bubble Rafts
Measurements of average velocity profiles in a bubble raft subjected to slow,
steady-shear demonstrate the coexistence between a flowing state and a jammed
state similar to that observed for three-dimensional foams and emulsions
[Coussot {\it et al,}, Phys. Rev. Lett. {\bf 88}, 218301 (2002)]. For
sufficiently slow shear, the flow is generated by nonlinear topological
rearrangements. We report on the connection between this short-time motion of
the bubbles and the long-time averages. We find that velocity profiles for
individual rearrangement events fluctuate, but a smooth, average velocity is
reached after averaging over only a relatively few events.Comment: typos corrected, figures revised for clarit
Vortex jamming in superconductors and granular rheology
We demonstrate that a highly frustrated anisotropic Josephson junction
array(JJA) on a square lattice exhibits a zero-temperature jamming transition,
which shares much in common with those in granular systems. Anisotropy of the
Josephson couplings along the horizontal and vertical directions plays roles
similar to normal load or density in granular systems. We studied numerically
static and dynamic response of the system against shear, i. e. injection of
external electric current at zero temperature. Current-voltage curves at
various strength of the anisotropy exhibit universal scaling features around
the jamming point much as do the flow curves in granular rheology, shear-stress
vs shear-rate. It turns out that at zero temperature the jamming transition
occurs right at the isotropic coupling and anisotropic JJA behaves as an exotic
fragile vortex matter : it behaves as superconductor (vortex glass) into one
direction while normal conductor (vortex liquid) into the other direction even
at zero temperature. Furthermore we find a variant of the theoretical model for
the anisotropic JJA quantitatively reproduces universal master flow-curves of
the granular systems. Our results suggest an unexpected common paradigm
stretching over seemingly unrelated fields - the rheology of soft materials and
superconductivity.Comment: 10 pages, 5 figures. To appear in New Journal of Physic
How Dilute are Dilute Solutions in Extensional Flows?
Submitted to J. Rheol.We investigate the concentration-dependence of the characteristic relaxation time of
dilute polymer solutions in transient uniaxial elongational flow. A series of monodisperse polystyrene solutions of five different molecular weights (1.8×10^6 ≤ M ≤ 8.3×10^6 g/mol) with concentrations spanning five orders of magnitude were dissolved in two solvents of differing solvent quality (diethyl phthalate and oligomeric styrene). Optical measurements of the rate of filament thinning and the time to break-up in each fluid are used to determine the characteristic relaxation time. A lower sensitivity limit for the measurements was determined experimentally and confirmed by comparison to numerical calculations.
Above this sensitivity limit we show that the effective relaxation time of moderately
dilute solutions (0.01 ≤ c/c* ≤ 1) in transient extensional flow rises substantially above the fitted value of the relaxation time extracted from small amplitude oscillatory shear flow and above the Zimm relaxation time computed from kinetic theory and intrinsic viscosity
measurements. This effective relaxation time exhibits a power-law scaling with the reduced
concentration (c/c*) and the magnitude of the exponent varies with the thermodynamic quality of the solvent. This scaling appears to be roughly consistent to that predicted when the dynamics of the partially elongated and overlapping polymer chains are described within the framework of blob theories for semi-dilute solutions.NASA Microgravity Fluid Dynamic
- …
