45 research outputs found

    De novo DHDDS variants cause a neurodevelopmental and neurodegenerative disorder with myoclonus

    Get PDF
    Subcellular membrane systems are highly enriched in dolichol, whose role in organelle homeostasis and endosomal-lysosomal pathway remains largely unclear besides being involved in protein glycosylation. DHDDS encodes for the catalytic subunit (DHDDS) of the enzyme cis-prenyltransferase (cis-PTase), involved in dolichol biosynthesis and dolichol-dependent protein glycosylation in the endoplasmic reticulum. An autosomal recessive form of retinitis pigmentosa (retinitis pigmentosa 59) has been associated with a recurrent DHDDS variant. Moreover, two recurring de novo substitutions were detected in a few cases presenting with neurodevelopmental disorder, epilepsy, and movement disorder. We evaluated a large cohort of patients (n=25) with de novo pathogenic variants in DHDDS and provided the first systematic description of the clinical features and long-term outcome of this new neurodevelopmental and neurodegenerative disorder. The functional impact of the identified variants was explored by yeast complementation system and enzymatic assay. Patients presented during infancy or childhood with a variable association of neurodevelopmental disorder, generalized epilepsy, action myoclonus/cortical tremor, and ataxia. Later in the disease course they experienced a slow neurological decline with the emergence of hyperkinetic and/or hypokinetic movement disorder, cognitive deterioration, and psychiatric disturbances. Storage of lipidic material and altered lysosomes were detected in myelinated fibers and fibroblasts, suggesting a dysfunction of the lysosomal enzymatic scavenger machinery. Serum glycoprotein hypoglycosylation was not detected and, in contrast to retinitis pigmentosa and other congenital disorders of glycosylation involving dolichol metabolism, the urinary dolichol D18/D19 ratio was normal. Mapping the disease-causing variants into the protein structure revealed that most of them clustered around the active site of the DHDDS subunit. Functional studies using yeast complementation assay and in vitro activity measurements confirmed that these changes affected the catalytic activity of the cis-PTase and showed growth defect in yeast complementation system as compared with the wild-type enzyme and retinitis pigmentosa-associated protein. In conclusion, we characterized a distinctive neurodegenerative disorder due to de novo DHDDS variants, which clinically belongs to the spectrum of genetic progressive encephalopathies with myoclonus. Clinical and biochemical data from this cohort depicted a condition at the intersection of congenital disorders of glycosylation and inherited storage diseases with several features akin to of progressive myoclonus epilepsy such as neuronal ceroid lipofuscinosis and other lysosomal disorders

    Mechanism of KMT5B haploinsufficiency in neurodevelopment in humans and mice.

    Get PDF
    Pathogenic variants in KMT5B, a lysine methyltransferase, are associated with global developmental delay, macrocephaly, autism, and congenital anomalies (OMIM# 617788). Given the relatively recent discovery of this disorder, it has not been fully characterized. Deep phenotyping of the largest (n = 43) patient cohort to date identified that hypotonia and congenital heart defects are prominent features that were previously not associated with this syndrome. Both missense variants and putative loss-of-function variants resulted in slow growth in patient-derived cell lines. KMT5B homozygous knockout mice were smaller in size than their wild-type littermates but did not have significantly smaller brains, suggesting relative macrocephaly, also noted as a prominent clinical feature. RNA sequencing of patient lymphoblasts and Kmt5b haploinsufficient mouse brains identified differentially expressed pathways associated with nervous system development and function including axon guidance signaling. Overall, we identified additional pathogenic variants and clinical features in KMT5B-related neurodevelopmental disorder and provide insights into the molecular mechanisms of the disorder using multiple model systems

    Continuing a search for a diagnosis: the impact of adolescence and family dynamics

    No full text
    Abstract The “diagnostic odyssey” describes the process those with undiagnosed conditions undergo to identify a diagnosis. Throughout this process, families of children with undiagnosed conditions have multiple opportunities to decide whether to continue or stop their search for a diagnosis and accept the lack of a diagnostic label. Previous studies identified factors motivating a family to begin searching, but there is limited information about the decision-making process in a prolonged search and how the affected child impacts a family’s decision. This study aimed to understand how families of children with undiagnosed diseases decide whether to continue to pursue a diagnosis after standard clinical testing has failed. Parents who applied to the Undiagnosed Disease Network (UDN) at the National Institutes of Health (NIH) were recruited to participate in semi-structured interviews. The 2015 Supportive Care Needs model by Pelenstov, which defines critical needs in families with rare/undiagnosed diseases, provided a framework for interview guide development and transcript analysis (Pelentsov et al in Disabil Health J 8(4):475–491, 2015. https://doi.org/10.1016/J.DHJO.2015.03.009 ). A deductive, iterative coding approach was used to identify common unifying themes. Fourteen parents from 13 families were interviewed. The average child’s age was 11 years (range 3–18) and an average 63% of their life had been spent searching for a diagnosis. Our analysis found that alignment or misalignment of parent and child needs impact the trajectory of the diagnostic search. When needs and desires align, reevaluation of a decision to pursue a diagnosis is limited. However, when there is conflict between parent and child desires, there is reevaluation, and often a pause, in the search. This tension is exacerbated when children are adolescents and attempting to balance their dependence on parents for medical care with a natural desire for independence. Our results provide novel insights into the roles of adolescents in the diagnostic odyssey. The tension between desired and realistic developmental outcomes for parents and adolescents impacts if, and how, the search for a diagnosis progresses
    corecore