214 research outputs found

    Nanoscale magnetometry through quantum control of nitrogen-vacancy centres in rotationally diffusing nanodiamonds

    Get PDF
    The confluence of quantum physics and biology is driving a new generation of quantum-based sensing and imaging technology capable of harnessing the power of quantum effects to provide tools to understand the fundamental processes of life. One of the most promising systems in this area is the nitrogen-vacancy centre in diamond - a natural spin qubit which remarkably has all the right attributes for nanoscale sensing in ambient biological conditions. Typically the nitrogen-vacancy qubits are fixed in tightly controlled/isolated experimental conditions. In this work quantum control principles of nitrogen-vacancy magnetometry are developed for a randomly diffusing diamond nanocrystal. We find that the accumulation of geometric phases, due to the rotation of the nanodiamond plays a crucial role in the application of a diffusing nanodiamond as a bio-label and magnetometer. Specifically, we show that a freely diffusing nanodiamond can offer real-time information about local magnetic fields and its own rotational behaviour, beyond continuous optically detected magnetic resonance monitoring, in parallel with operation as a fluorescent biomarker.Comment: 9 pages, with 5 figure

    Single atom-scale diamond defect allows large Aharonov-Casher phase

    Get PDF
    We propose an experiment that would produce and measure a large Aharonov-Casher (A-C) phase in a solid-state system under macroscopic motion. A diamond crystal is mounted on a spinning disk in the presence of a uniform electric field. Internal magnetic states of a single NV defect, replacing interferometer trajectories, are coherently controlled by microwave pulses. The A-C phase shift is manifested as a relative phase, of up to 17 radians, between components of a superposition of magnetic substates, which is two orders of magnitude larger than that measured in any other atom-scale quantum system.Comment: 5 pages, 2 figure

    Measurable quantum geometric phase from a rotating single spin

    Get PDF
    We demonstrate that the internal magnetic states of a single nitrogen-vacancy defect, within a rotating diamond crystal, acquire geometric phases. The geometric phase shift is manifest as a relative phase between components of a superposition of magnetic substates. We demonstrate that under reasonable experimental conditions a phase shift of up to four radians could be measured. Such a measurement of the accumulation of a geometric phase, due to macroscopic rotation, would be the first for a single atom-scale quantum system.Comment: 5 pages, 2 figures: Accepted for publication in Physical Review Letter

    BlinkML: Efficient Maximum Likelihood Estimation with Probabilistic Guarantees

    Full text link
    The rising volume of datasets has made training machine learning (ML) models a major computational cost in the enterprise. Given the iterative nature of model and parameter tuning, many analysts use a small sample of their entire data during their initial stage of analysis to make quick decisions (e.g., what features or hyperparameters to use) and use the entire dataset only in later stages (i.e., when they have converged to a specific model). This sampling, however, is performed in an ad-hoc fashion. Most practitioners cannot precisely capture the effect of sampling on the quality of their model, and eventually on their decision-making process during the tuning phase. Moreover, without systematic support for sampling operators, many optimizations and reuse opportunities are lost. In this paper, we introduce BlinkML, a system for fast, quality-guaranteed ML training. BlinkML allows users to make error-computation tradeoffs: instead of training a model on their full data (i.e., full model), BlinkML can quickly train an approximate model with quality guarantees using a sample. The quality guarantees ensure that, with high probability, the approximate model makes the same predictions as the full model. BlinkML currently supports any ML model that relies on maximum likelihood estimation (MLE), which includes Generalized Linear Models (e.g., linear regression, logistic regression, max entropy classifier, Poisson regression) as well as PPCA (Probabilistic Principal Component Analysis). Our experiments show that BlinkML can speed up the training of large-scale ML tasks by 6.26x-629x while guaranteeing the same predictions, with 95% probability, as the full model.Comment: 22 pages, SIGMOD 201

    Placement decisions and disparities among Aboriginal groups: An application of the Decision Making Ecology through multi-level analysis

    Get PDF
    a b s t r a c t Objective: This paper examined the relative influence of clinical and organizational characteristics on the decision to place a child in out-of-home care at the conclusion of a child maltreatment investigation. It tested the hypothesis that extraneous factors, specifically, organizational characteristics, impact the decision to place a child in out-of-home care. A secondary aim was to identify possible decision making influences related to disparities in placement decisions tied to Aboriginal children. Research suggests that the Aboriginal status of the child and structural risk factors affecting the family, such as poverty and poor housing, substantially account for this overrepresentation. Methods: The decision to place a child in out-of-home care was examined using data from the Canadian Incidence Study of Reported Child Abuse and Neglect. This child welfare dataset collected information about the results of nearly 5,000 child maltreatment investigations as well as a description of the characteristics of the workers and organization responsible for conducting those investigations. Multi-level statistical models were developed using MPlus software, which can accommodate dichotomous outcome variables, which are more reflective of decision making in child welfare. Mplus allows the specific case of the logistic link function for binary outcome variables under maximum likelihood estimation. Results: Final models revealed the importance of the number of Aboriginal reports to an organization as a key second level predictor of the placement decision. It is the only second level factor that remains in the final model. This finding was very stable when tested over several different levels of proportionate caseload representation ranging from greater than 50% to 20% of the caseload. Conclusions: Disparities among Aboriginal children in child welfare decision making were identified at the agency level. Practice implications: The study provides additional evidence supporting the possibility that one source of overrepresentation of Aboriginal children in the Canadian foster care system is a lack of appropriate resources at the agency or community level

    On the alleged simplicity of impure proof

    Get PDF
    Roughly, a proof of a theorem, is “pure” if it draws only on what is “close” or “intrinsic” to that theorem. Mathematicians employ a variety of terms to identify pure proofs, saying that a pure proof is one that avoids what is “extrinsic,” “extraneous,” “distant,” “remote,” “alien,” or “foreign” to the problem or theorem under investigation. In the background of these attributions is the view that there is a distance measure (or a variety of such measures) between mathematical statements and proofs. Mathematicians have paid little attention to specifying such distance measures precisely because in practice certain methods of proof have seemed self- evidently impure by design: think for instance of analytic geometry and analytic number theory. By contrast, mathematicians have paid considerable attention to whether such impurities are a good thing or to be avoided, and some have claimed that they are valuable because generally impure proofs are simpler than pure proofs. This article is an investigation of this claim, formulated more precisely by proof- theoretic means. After assembling evidence from proof theory that may be thought to support this claim, we will argue that on the contrary this evidence does not support the claim

    Convolutional Networks on Graphs for Learning Molecular Fingerprints.

    Get PDF
    We introduce a convolutional neural network that operates directly on graphs. These networks allow end-to-end learning of prediction pipelines whose inputs are graphs of arbitrary size and shape. The architecture we present generalizes standard molecular feature extraction methods based on circular fingerprints. We show that these data-driven features are more interpretable, and have better predictive performance on a variety of tasks.Chemistry and Chemical Biolog

    All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins

    Get PDF
    All-optical electrophysiology—spatially resolved simultaneous optical perturbation and measurement of membrane voltage—would open new vistas in neuroscience research. We evolved two archaerhodopsin-based voltage indicators, QuasAr1 and QuasAr2, which show improved brightness and voltage sensitivity, have microsecond response times and produce no photocurrent. We engineered a channelrhodopsin actuator, CheRiff, which shows high light sensitivity and rapid kinetics and is spectrally orthogonal to the QuasArs. A coexpression vector, Optopatch, enabled cross-talk–free genetically targeted all-optical electrophysiology. In cultured rat neurons, we combined Optopatch with patterned optical excitation to probe back-propagating action potentials (APs) in dendritic spines, synaptic transmission, subcellular microsecond-timescale details of AP propagation, and simultaneous firing of many neurons in a network. Optopatch measurements revealed homeostatic tuning of intrinsic excitability in human stem cell–derived neurons. In rat brain slices, Optopatch induced and reported APs and subthreshold events with high signal-to-noise ratios. The Optopatch platform enables high-throughput, spatially resolved electrophysiology without the use of conventional electrodes
    • 

    corecore