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We propose an experiment that would produce and measure a large Aharonov-Casher �AC� phase in a
solid-state system under macroscopic motion. A diamond crystal is mounted on a spinning disk in the presence
of a uniform electric field. Internal magnetic states of a single nitrogen-vacancy �N-V� defect, replacing
interferometer trajectories, are coherently controlled by microwave pulses. The AC phase shift is manifested as
a relative phase, of up to 17 radians, between components of a superposition of magnetic substates, which is
two orders of magnitude larger than that measured in any other atom-scale quantum system.
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I. INTRODUCTION

One of the fundamental predictions of quantum mechan-
ics is the existence of topological phases. A famous case still
relatively unexplored is the Aharonov-Casher �AC� effect: if
a particle with a magnetic moment is taken about a line of
charge, it acquires a phase which is independent of its veloc-
ity and only topologically dependent on its path �1�. The
effect is important for spin currents in mesoscopic rings
�2,3�, vortices in superconductors �4,5�, and it has potential
applications in topological quantum computing �6,7�. The
AC phase, a relativistic effect, is much harder to produce
than the Aharonov-Bohm effect �8� and other better-studied
topological phases. Experiments using atom beams �9–11�
and neutron interferometers �12� have successfully measured
the AC effect but only small phases have been produced, of
order 0.15 rad or less. In contrast to these atom-scale sys-
tems, large AC phases can arise through collective effects in
mesoscopic rings �3�. Here, we propose a method to generate
and measure a large AC phase through quantum control of a
single atomic-scale system: the negatively charged diamond
nitrogen-vacancy �N-V� center.

The N-V center is a naturally occurring defect in diamond
which has a spin triplet electronic ground state with excellent
coherence properties, making it a widely considered candi-
date for a quantum bit �13,14�. In our proposed experiment,
an N-V center, coherently controlled by microwave pulses,
acquires a relative AC phase between its magnetic sublevels
as it moves between two charged plates �Fig. 1�a��. The ex-
periment is made possible by recent developments in coher-
ent control of N-V centers, which have shown that an N-V
center can act as a highly sensitive magnetometer, detecting
fields down to nTHz−1/2 sensitivity, at room temperature
�15–20�. The experiment would be a powerful test of the AC
effect, generating an accurately measurable AC phase two
orders of magnitude larger than those of previous experi-
ments and could open up a new field of applications for
coherently controlled solid-state quantum systems.

II. AC PHASE

Aharonov and Casher considered a neutral nonrelativistic
spin-1

2 particle with magnetic dipole moment ��̂, moving in

a chargeless region of nonvanishing electric field E�x�. The
Hamiltonian for such a particle can be derived from the
Dirac Lagrangian in the low-energy limit:

Ĥ =
1

2m
�p̂ −

�

c2�̂ � E�x̂��2

−
�2E�x̂�2

2mc4 . �1�

The AC effect is usually treated in 2+1 dimensions. Some
authors use an explicitly two-dimensional wave equation
�21�. Others effectively reduce the Hamiltonian to two di-
mensions by requiring the wave function to be independent
of the z coordinate and setting Ez=0 and �zE=0 �22�. In
either approach, if ��0� is some solution to the Schrödinger
equation in the absence of an electric field, then

��� = e−i�̂�x̂,ŷ���0� , �2�

where �̂�x,y� = −
�

�c2	
�

�̂ � E�x�,y�� · dx� �3�

solves the Schrödinger equation in the presence of the elec-
tric field. The path of integration � can be any path in the x-y
plane that shares the same topology as the path of the par-

ticle. ��� differs from ��0� only by an SU�2� phase �̂�x ,y�
which is the AC phase.

FIG. 1. �Color online� Proposed experimental setup. �a� Geom-
etry of experiment; a diamond crystal on a spinning disk between
two charged plates with a uniform static magnetic field in the z
direction. �b� Energy level diagram of the N-V center.
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We briefly outline an alternative derivation of the AC ef-
fect, which holds for a localized particle of arbitrary spin in
three dimensions. For particles of arbitrary spin S, the Dirac
equation generalizes to the Bargmann-Wigner �B-W� equa-
tion �21�. Taking the B-W equation in the low-energy limit
gives the Hamiltonian

Ĥ =
1

2m
�p̂ −

�

c2 Ŝ � E�x̂��2

+ V̂�x̂� +
�2E�x̂�2

2mc4

−
1

2mc4 ��Ŝ � E�x̂��2, �4�

where Ŝ is the spin operator of the particle, V̂ is a potential

which may depend on spin, and �Ŝ is the magnetic moment
of the particle. We can ignore the last two terms of Eq. �4�
since, due to the pulse sequence discussed below, they will
not contribute to the measured signal.

Let ��0 ; t� be a solution to the Schrödinger equation with
E=0, that describes a highly localized particle following a
trajectory r�t�. A solution to the Schrödinger equation with
E�0 can then be written as

��;t� = Â�t�Û„r�t�…��0;t� , �5�

where Â�t� = 1 +
i�

�c2 Ŝ � E„r�t�… · �x̂ − r�t�� , �6�

and Û must satisfy an integral equation,

Û„r�t�… = 1 +
i�

�c2	
0

t

�Ŝ � E„r�t��… · ṙ�Û„r�t��…dt� �7�

whose solution can be expressed as a Dyson series. We have

assumed that �Û(r�t�) , V̂�=0 and that the particle is suffi-

ciently localized that x̂��0 ; t�
r�t���0 ; t� and, hence, Â��0�

��0�.

The operator Û�x� is an SU�2� phase factor, similar to the

AC phase factor exp�−i�̂�x ,y�� of Eq. �3�. However,

whereas �̂�x ,y� only depends on the path’s topology, Û�x�
depends, in general, on the details of the path r�t� of the
particle. Small movements of the particle cause precession of
its spin about an axis perpendicular to both the electric field

and the direction of motion. The path dependence of Û arises
from the noncommutativity of rotations about different axes:

as Anandan notes �23�, we can view Ŝ�E as a non-Abelian
gauge field.

The full SU�2� phase can be explored by tilting the plane
of the spinning disk about the y axis. However, the non-
Abelian effects will be small, as they are of second order in
the Dyson series expansion of Eq. �7�. If we restrict the par-
ticle’s motion to the x-y plane and set Ez=0 and �zE=0 as
before, we recover the usual path-independent AC effect:

Û�x̂�=e−i�̂.

III. AC PHASE IN DIAMOND

The N-V electronic energy level structure is shown in Fig.
1�b�. We are interested in the 3A ground state, which is con-

nected to the excited states by optical excitations. Initializa-
tion of the N-V center is performed by optical pumping into
�0�, followed by Rabi pulses to achieve some coherent super-
position of the spin sublevels �0� and �1� �26�. The relative
populations of the spin sublevels can be observed by optical
excitation and a measurement of fluorescence.

Ignoring crystal asymmetries and interactions with

nuclear spin, the spin Hamiltonian Ĥs for the 3A ground state
can be written as

Ĥs = D�Ŝz −
1

3
Ŝ2� + g�BB · Ŝ , �8�

where D=2.88 GHz is the zero-field splitting parameter, B
is the external magnetic field, and g
2 is the gyromagnetic
ratio of the N-V center. Note the N-V center’s negative
charge does not affect the spin Hamiltonian and hence is
decoupled from the AC dynamics.

To treat the AC effect for the N-V center, we introduce a
Hilbert space that is spanned by the position eigenstates of
the N-V center. A general state of the N-V center can then be
written as ���= ��S� � ��R�, where ��S� is a superposition of
�0�, �1�, and �−1�, and ��R� gives the position of the N-V
center. The total Hamiltonian of 3A state is then

Ĥ = Ĥs � 1̂R +
1

2m
�1̂S � p̂ +

g�B

c2 �Ŝ � E� � 1̂R�2

+ 1̂S � V̂ ,

�9�

where p̂ is the N-V center-of-mass momentum, m is the N-V

center’s effective mass, and V̂ is a potential which acts only
on the position space.

Now consider an N-V center moving in the x-y plane, in
the presence of an electric field E�x�, with Ez=0 and �zE
=0, and a magnetic field, of magnitude B, in the z direction.
Let �r�t�� be a solution to the Schrödinger equation for the
position Hilbert space, such that �r�t�� describes the motion
of the N-V center along some trajectory, r�t�. If the N-V
center is initialized to

��;t = 0� = �c0�0� + c1�1�� � �r�t = 0�� , �10�

where the ci are complex coefficients, then after time t the
state of the N-V center will be

��;t� = �c0�0� + e−i�AC�r�t��e−it�D+gB�B�/�c1�1�� � �r�t��,

where �AC�x� =
g�B

�c2 	
�

k̂ � E�x�� · dx�.

�11�

It is this �AC�x�, the AC phase in diamond, which our pro-
posed experiment would measure.

We briefly pause to consider the topological nature of the
AC effect. Boyer �24� and Casella �25�, among others, have
contested the appropriateness of the term “topological.” In
particular, Casella noted that the AC effect can be detected
without a topological defect and proposed the geometry that
we use here: a particle in a superposition of states passes
between two charged plates. �The AC phase in this geometry
is often termed the “Casella phase.”� Görlitz et al. �10� make
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a strong case for observing the AC phase using this geom-
etry, in which the superposed substates are treated as arms of
an interferometer. The characteristic nondispersiveness and
path independence of topological phases remain in any case.

IV. EXPERIMENTAL PROPOSAL

We envisage an experimental setup as illustrated in Fig.
1�a�. A diamond crystal is embedded at the edge of a disk of
radius r that lies in the x-y plane and spins, with frequency f ,
about the z axis. The crystal is oriented so that the N-V of
interest is aligned parallel to the z axis. Two charged plates,
connected to a constant voltage source, provide a uniform
static electric field E in the x direction. A pair of Helmholtz
coils provides a uniform static magnetic field B, on the order
of Gauss, along the z direction, which lifts the m= �1 de-
generacy �15�. The experiment consists of initializing a
single N-V center into a coherent superposition of spin sub-
levels and observing the relative phase that accumulates be-
tween the sublevels due the AC effect. As the disk rotates,
the N-V spin states evolve according to Eq. �11�. Note that
the rate of AC phase accumulation varies sinusoidally in
time. Positive �negative� AC phase accrues as the diamond
moves in the positive �negative� y direction.

The N-V center is initialized, controlled and measured
using a 532 nm laser, a microwave generator, and a photo-
detector, which each focus on particular points of the dia-
mond’s path as shown in Fig. 2�a�. The laser is used for
optical pumping and readout and the photodetector measures
fluorescence. The microwave generator drives two coils, lo-
cated close to the spinning disk, at points A and B, which
perform controlled Rabi rotations of the N-V center’s spin
sublevels. Alternatively, Rabi oscillations could be induced
optically �27�.

The pulse sequence and the corresponding quantum state
evolution are shown schematically in Fig. 2�a�. This is essen-
tially a spin echo experiment: � pulses are used to remove
any net precession due to static magnetic fields, while recti-
fying the sinusoidal AC phase accumulation. The disk is first
set spinning. As the diamond passes point A, the N-V center
is optically pumped into the m=0 state �0� using the 532 nm
laser �Bloch sphere �i� of Fig. 2�a��. Next, a � /2 Rabi pulse
creates a coherent superposition of �0� and �1� �ii�. As the
disk continues to rotate, a � Rabi pulse is applied every time
the diamond passes points A or B, which inverts the phase
between the �0� and �1� sublevels ��iii� and �iv��. After the
diamond has completed n full rotations �v�, a second � /2
pulse is applied, which converts the relative phase acquired
during rotation into a population difference between the sub-
levels �vi�. A pulse from the 532 nm laser then excites the
N-V center and a fluorescence measurement is taken. Note
that we can ignore the motion of the diamond for the dura-
tion of each of the pulses �
0.5 �s or less�: given reason-
able figures for the disk’s rotation frequency and radius �see
below�, the diamond is stationary to within a few tens of
microns. The total phase accumulated � is given by

� =
4

�c2g�BrEn . �12�

An ensemble of measurements, made over time, will not
be perfectly coherent. For N-V centers, the dominant deco-
herence process is dephasing �divergence in the phase evo-
lution of different members of the ensemble� rather than spin
relaxation. Dephasing manifests itself as an exponential de-
cay of the fluorescence signal, toward a value corresponding
to equal populations of �0� and �1�, as the evolution time of
the experiment is increased.

The fastest dephasing due to inhomogeneous magnetic
fields gives a so-called T2

� dephasing time on the order of �s
�28�. However, these magnetic fields fluctuate slowly com-
pared with other time scales, which means that the sequence
of � pulses eliminates any net effect �15�. The next fastest
dephasing is the T2 homogeneous broadening due fast-
fluctuating magnetic fields caused by the nuclear spin of 13C
atoms. T2 times of up to 1.8 ms have been recorded in recent
experiments �17�.

If the pulse sequence is conducted for E ranging from zero
to E0 while keeping the number of rotations per run n and the
evolution time tr fixed, then the fluorescence count, plotted
as a function of E, will look like Fig. 2�b�. To minimize error
in measuring the maximum AC phase from the fluorescence
signal, the gradient of the curve should be a maximum at E0.
This can be achieved by appropriately shifting the phase of
the final � /2 microwave pulse. In the example shown, the

FIG. 2. �Color online� �a� Pulse scheme �pulse times not to
scale� and rotating-frame Bloch sphere state evolution for a single
rotation of the disk, with � rad of accumulated AC phase. Runs
with multiple rotations would have further � pulses whenever the
diamond passes points A and B. �b� Example fluorescence signal as
a function of electric field strength, where the maximum AC phase
is 10 rad. y axis units are arbitrary. Dots represent example experi-
mental data points.

SINGLE ATOM-SCALE DIAMOND DEFECT ALLOWS A … PHYSICAL REVIEW A 80, 040104�R� �2009�

RAPID COMMUNICATIONS

040104-3



pulse’s phase lags by 2.15 rad behind the earlier pulses. To
measure a very small phase ��AC	1 rad�, the lag should be
� /2.

van Oort has shown that, in addition to the well-known
excited state Stark shift �29�, the N-V ground-state experi-
ences a linear Stark shift �30�, with Hamiltonian

HStark = − �ER2E�e−3i
�− 1��1� + e3i
�1��− 1�� , �13�

where the constant R2E is approximately 20 Hz V−1 cm and

 is the angle between E and one of the crystal’s three planes
of symmetry containing the N-V axis. The energy eigenstates
then rotate at triple the frequency of the diamond’s rotation.
By the adiabatic theorem provided the diamond’s rotation
frequency is much smaller than the energy separation be-
tween the m= �1 states, the Stark shift will simply shift the
energy of these states by a constant amount,
�2R2E

2 E2 / �Bzg�B�. The � pulses will therefore eliminate any
net effect of the ground state Stark shift.

We envisage realistic experimental parameters f =4 kHz,
r=1 cm, E=30 kV /mm �31�, and T2=1.8 ms. These pa-
rameters would give a total AC phase of 
17 rad, which is
two orders of magnitude larger than previous neutron and
atom beam experiments �10,11�. Experiments measuring the
resistance of mesoscopic rings have demonstrated AC-like
phases of this order �3�, though in these cases the phase
comes from precession about a continuously changing axis
as the electric field is perpendicular to the plane of motion of
the magnetic dipole, and the Rashba spin-orbit coupling
arises from a many-body interaction.

Two intrinsic sources of error are shot noise due to the
finite fraction of photons detected and spin projection noise
due to the probabilistic nature of quantum measurements.

These both follow Poisson statistics, yielding a sensitivity �
in the measurement of �AC,

� =
��AC

�T



�2

C�T2

, �14�

where C �
0.05 for typical experiments� is a factor which
takes into account collection efficiency and the nonzero fluo-
rescence of �1� �18� and T is the combined time of the indi-
vidual runs. We have taken the duration tr of each run to be
T2, to optimize the relative uncertainty ��AC /�AC given the
signal’s exponential decay in tr /T2.

A single N-V center could measure an AC phase to within
a radian over 100 h ��
700 rad Hz−1/2�. Alternatively, a
spatial ensemble of N individual centers would allow a high-
precision measurement, improving the sensitivity by �N.
N-V densities as high as 1011 mm−3 could be used without
admitting spin-spin decoherence �18� which, given a crystal
size of �1 mm�3, would give very high sensitivity: �

2 mrad Hz−1/2.

We have shown that an AC phase shift in diamond can be
observed using current experimental techniques. The phase
shift can be very large and can be measured to great accu-
racy. Moreover, as a solid state system whose path can be
precisely controlled, the N-V center can be used to probe
deeper aspects of topological phases, such as the non-
Abelian dynamics of the AC phase in three dimensions.
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