140 research outputs found

    Numerical Investigation of Thermal Stress Convention in Nonisothermal Gases Under Microgravity Conditions

    Get PDF
    Reported here are our results of our numerical/theoretical investigation into the effects of thermal stress in nonisothermal gases under microgravity conditions. The first part of the report consists of a brief summary of the accomplishments and conclusions of our work. The second part consists of two manuscripts, one being a paper presented at the 1998 MSAD Fluid Physics workshop, and the other to appear in Physics of Fluids

    Investigation of Thermal Creep and Thermal Stress Effects in Microgravity Physical Vapor Transport

    Get PDF
    Reported here are the results of our numerical investigation into the mechanisms which affect the transport and growth processes in physical vapor transport (PVT) crystal growth ampoules. The first part of the report consists of a brief summary of the major accomplishments and conclusions of our work. The second part consists of two manuscripts, submitted to the Journal of Crystal Growth, which provided a detailed description of the findings in our investigation

    A T matrix method based upon scalar basis functions

    Get PDF
    A surface integral formulation is developed for the T matrix of a homogenous and isotropic particle of arbitrary shape, which employs scalar basis functions represented by the translation matrix elements of the vector spherical wave functions. The formulation begins with the volume integral equation for scattering by the particle, which is transformed so that the vector and dyadic components in the equation are replaced with associated dipole and multipole level scalar harmonic wave functions. The approach leads to a volume integral formulation for the T matrix, which can be extended, by the use of Green's identities, to the surface integral formulation. The result is shown to be equivalent to the traditional surface integral formulas based on the VSWF basis

    T-Matrix Method and its Applications to Electromagnetic Scattering by Particles: A Current Perspective

    Get PDF
    This note serves as a short introduction to the reprint of our article "T-matrix computations of light scattering by nonspherical particles: a review" (JQSRT 1996; 55:535:75). We first discuss the motivation for writing that article and explain its historical context. This is followed by a short overview of more recent developments

    Optical Studies of Zero-Field Magnetization of CdMnTe Quantum Dots: Influence of Average Size and Composition of Quantum Dots

    Full text link
    We show that through the resonant optical excitation of spin-polarized excitons into CdMnTe magnetic quantum dots, we can induce a macroscopic magnetization of the Mn impurities. We observe very broad (4 meV linewidth) emission lines of single dots, which are consistent with the formation of strongly confined exciton magnetic polarons. Therefore we attribute the optically induced magnetization of the magnetic dots results to the formation of spin-polarized exciton magnetic polarons. We find that the photo-induced magnetization of magnetic polarons is weaker for larger dots which emit at lower energies within the QD distribution. We also show that the photo-induced magnetization is stronger for quantum dots with lower Mn concentration, which we ascribe to weaker Mn-Mn interaction between the nearest neighbors within the dots. Due to particular stability of the exciton magnetic polarons in QDs, where the localization of the electrons and holes is comparable to the magnetic exchange interaction, this optically induced spin alignment persists to temperatures as high as 160 K.Comment: 26 pages, 7 figs - submitted for publicatio

    Crystal growth furnace safety system validation

    Get PDF
    The findings are reported regarding the safe operation of the NASA crystal growth furnace (CGF) and potential methods for detecting containment failures of the furnace. The main conclusions are summarized by ampoule leak detection, cartridge leak detection, and detection of hazardous species in the experiment apparatus container (EAC)

    Polarization control of metal-enhanced fluorescence in hybrid assemblies of photosynthetic complexes and gold nanorods

    Get PDF
    Fluorescence imaging of hybrid nanostructures composed of a bacterial light-harvesting complex LH2 and Au nanorods with controlled coupling strength is employed to study the spectral dependence of the plasmon-induced fluorescence enhancement. Perfect matching of the plasmon resonances in the nanorods with the absorption bands of the LH2 complexes facilitates a direct comparison of the enhancement factors for longitudinal and transverse plasmon frequencies of the nanorods. We find that the fluorescence enhancement due to excitation of longitudinal resonance can be up to five-fold stronger than for the transverse one. We attribute this result, which is important for designing plasmonic functional systems, to a very different distribution of the enhancement of the electric field due to the excitation of the two characteristic plasmon modes in nanorods

    Coherently tunable third-order nonlinearity in a nanojunction

    Full text link
    A possibility of tuning the phase of the third-order Kerr-type nonlinear susceptibility in a system consisting of two interacting metal nanospheres and a nonlinearly polarizable molecule is investigated theoretically and numerically. It is shown that by varying the relative inter-sphere separation, it is possible to tune the phase of the effective nonlinear susceptibility \chi^{(3)}(\omega;\omega,\omega,-\omega)inthewholerangefrom0to in the whole range from 0 to 2\pi$.Comment: 10 pages 5 figure

    Measurements of a low temperature mechanical dissipation peak in a single layer of Ta2O5 doped with TiO2

    Get PDF
    Thermal noise arising from mechanical dissipation in oxide coatings is a major limitation to many precision measurement systems, including optical frequency standards, high resolution optical spectroscopy and interferometric gravity wave detectors. Presented here are measurements of dissipation as a function of temperature between 7 K and 290 K in ion-beam sputtered Ta2O5 doped with TiO2, showing a loss peak at 20 K. Analysis of the peak provides the first evidence of the source of dissipation in doped Ta2O5 coatings, leading to possibilities for the reduction of thermal noise effects
    corecore