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1 Report Summary

1.1 Overview

Reported here are our results of our numerical/theoretical investigation into

the effects of thermal stress in nonisothermal gases under microgravity con-

ditions. The first part of the report consists of a brief summary of the ac-

complishments and conclusions of our work. The second part consists of two

manuscripts, one being a paper presented at the 1998 MSAD Fluid Physics

workshop, and the other to appear in Physics of Fluids.

1.2 Project Objectives

The objectives of our project were, first of all, to determine the accuracy of

the Burnett constitutive equations for gases as applied to highly nonisother-

mal, slow-moving gases by comparison 'numerical experiments' provided by

direct simulation monte carlo (DSMC) methods. Secondly. we were to use

these findings to assess the feasibility of using the microgravity environment

to experimentally isolate and measure the flows resulting from thermal stress

(as predicted by the Burnett equations) in highly nonisothermal, buoyancy-

free gases.

2 Technical Summary of the Project

2.1 Background and Motivation

The continuum description of momentum and energy transport in gases,

based upon Newton-Stokes- Fourier constitutive relations, can become in-

accurate in rarefied or highly nonequilbrium regimes, i.e., regimes in which

the Knudsen number Kn (= AlL, where A is the gas mean free path and L

is the characteristic system or gradient length) is no longer small. The Bur-

nett equations, which represent the order-/(n 2 solution to the Boltzmann

equation, ostensibly provide a means of extending continuum formulations

into the transitional Knudsen regimes (_ Kn < 0.1). The accuracy and va-

lidity of the Burnett equations, however, have not been firmly established.

As has been noted by several authors, the asymptotic series expansion of

the molecular distribution function - from which the Burnett equations are

derived - has unknown convergence properties for finite Kn. The Burnett



equations can also lead to Second-law impossibilities, such as heat flux in

an isothermal gas. Furthermore, the Burnett equations increase the order

of the differential equations that govern momentum and heat transport in

the gas. Additional boundary condition information is required to fully close

the problem - yet such information is generally not available from physical

principles alone.

Because of these issues, it is generally held that the Burnett equations

are valid only in regimes in which the Navier-Stokes-Fourier level of approxi-

mation already provides an adequate description of transport, i.e., regimes in

which the Burnett contributions represent a small perturbation to heat and

momentum transport. Such conditions can be representative of high-Mach

number flows, for which appIication of the Burnett equations appears to

have been the most successful. On the other hand, there is not a broad

understanding of the accuracy of the Burnett equations when applied to

slow-moving, nonisothermal flow conditions. In principle, 'thermal stresses'

(fluid stresses resulting from temperature gradients - which are predicted

by the Burnett equations) could become a significant convection mechanism

in buoyancy-free, nonisothermal gases. Indeed, it has been recently sug-

gested that thermal stress convection could affect the growth of crystals in

microgravity physical vapor transport experiments.

The project described here consisted of a theoretical and numerical ex-

amination of thermally-induced stresses and flows in enclosed, highly non-

isothermal gases under buoyancy-free conditions. A central objective has

been to identify a strategy in which stress and/or convection effects, as pre-

dicted by the Burnett equations, could be isolated and measured in micro-

gravity-based experiments. Because of the questionable veracity of the Bur-

nett equations, a second objective has been to test Burnett predictions of

nonisothermal gas stress and convection with the exact description provided

by the direct simulation Monte Carlo (DSMC) method.

2.2 Thermal stress in two-dimensional gases

The initial phase of the project was aimed at calculation, using continuum

and DSMC methods, of gas convection in two dimensional nonuniformly

heated rectangular enclosures. Typically, two adjacent surfaces of the en-

closure were modeled as adiabatic, zero-stress surfaces (i.e., planes of sym-

metry), and the other two adjacent surfaces were maintained at specified

temperature distributions with one surface transferring a net amount of heat



to the gas, and the other transferring the heat from the gas. According

to continuum theory, convection in the enclosure would result from thermal

stress in the bulk gas and thermal creep along the side walls - the latter

mechanism being the slip flow of gas over a solid surface that is driven by a

gas temperature gradient tangential to the surface.

Our continuum and DSMC calculations to date have not identified con-

ditions in the enclosure that lead to measurable thermal stress flows that

are comparable to or larger than thermal creep flows, and simultaneously

maintain the Kn < 0.1 regime required of the Burnett equations. With

the exception of the pure continuum limit (Kn _ 0, under which thermal

stress vanishes), elimination of thermal creep cannot be accomplished by

maintaining the heated/cooled walls at uniform temperatures. Rather, the

discontinuity (or jump) between the surface and adjacent gas temperatures -

which will be proportional to Kn and the local normal temperature gradient

- will lead to nonuniform gas temperatures along the nonuniformly heated

surfaces. For all realistic values of Kn, thermal creep flows generated by the

temperature jump effects were substantially larger than those resulting from
thermal stress.

To minimize the effects of creep, we performed additional simulations in

which the temperature distributions along the heated/cooled surfaces were

assigned to provide, for a given Kn, nearly uniform gas temperature adjacent

to the surface. Surface temperature distributions were determined from so-

lution of the gas conduction equation with uniform gas temperature bound-

ary conditions along the adjacent heated/cooled surfaces, and subsequent

application of the solution into the order-t(n temperature jump relations.

This approach imposed a surface temperature variation along the heated wall

which increased towards the junction with the cooled wall, with an opposite

trend along the cooled wall. The effect of this strategy largely eliminated

thermal creep from continuum-based models, and left a computed flow field

which was driven almost entirely by thermal stress. However, this strategy

would also lead to highly nonequilibrium conditions in the vicinity of the

hot/cold surface junction, for which the Burnett equations are not expected

to hold. DSMC calculations on the same system showed convective flows that

were qualitatively similar yet substantially larger than those predicted by the

continuum model - even though the DSMC and continuum-calculated tem-

perature fields were in significant agreement.
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2.3 Thermal stress in one-dimensional gases

A more direct method of examining thermal stress effects would be to di-

rectly measure the normal stress in a gas that is contained between two

parallel surfaces at different yet uniform temperature - which will eliminate

convection from thermal creep. We have investigated the effects of thermal

stress, as predicted by the Burnett equation, on the pressure distributions

and normal stress in a stationary, buoyancy-free, hard-sphere gas for the

case of one-dimensional heat transfer. Using First-Law principles and the

Burnett equation, it can be shown that thermal stress results in a reduction

in normal stress in the nonisothermal gas relative to that in the equilibrium

state. The normal stress, in turn, can be obtained as an eigenvalue to a

second-order ordinary differential equation, representing the Burnett equa-

tion, for the pressure distribution in the gas. Boundary conditions for the

pressure at the heated and cooled surfaces can be obtained by an asymptotic

expansion of the Burnett equations within the Knudsen rarefaction lavers

adjacent to the surfaces, which provides an order-Kn 2 correction the order-

Kn pressure slip relations that are obtained from solution of the linearized

Boltzmann equation at the gas/surface interface.

The Burnett and DSMC predictions of pressure are in close agreement for

effective Knudsen numbers (based on the temperature gradient in the gas)

less than 0.1. In particular, the Burnett equations can accurately describe

the shape of the Knudsen (or rarefaction) layers adjacent to the heated and

cooled surfaces that bound the gas, and can also describe the variation in

pressure in the 'bulk' gas (i.e., outside the Knudsen layers). In addition,

theoretical predictions of the reduction in normal stress correspond well to

DSMC-derived values.

2.4 Conclusions

2.4.1 Validity of the Burnett equations

The original project was motivated by the concept of a slow-moving, non-

isothermal gas flow driven entirely by thermal stress within the gas. Since

buoyant forces would typically overwhelm the thermal stress forces in normal

gravity conditions, we hypothesized, in the original proposal, that thermal

stress flows could be realized under microgravity conditions. The central

objective of the project was to conduct numerical simulations to determine

1) the validity of the Burnett equations as applied to slow-moving thermal

4



stressflows, and 2) ascertain the feasibility of using the microgravity envi-
ronment to experimentally measuresuchflows.

Regardingobjective 1) above,we weresuccessfulin demonstrating that
the Burnett equationsareconsistentwith DSMC 'reality' for the simplecase
of a I-D, stationary nonisothermal gas. On the other hand, we obtained
decidedlyambiguousresultson the validity of the Burnett equationsapplied
to 2-D nonisothermal, slow-moving gases. For such situations, DSMC re-
sults areonly qualitatively similar to that predictedby the continuum-based
Burnett model.

A problemwith the 2-D simulations- whichwewerenot ableto overcome
- wasthat the creation of wall heatingconditions necessaryto drive thermal
stressflows (as predicted by the Burnett equations) lead to local Knudsen
conditionsthat wereoutsideof the rangeof validity of the Burnett equations.
In principle, this could be alleviated by reducingthe overall Knudsencondi-
tions of the simulation to the near-continuum level (i.e., Kn << 1) - yet it is

currently not feasible to simulate such conditions with DSMC. Specifically,

the near-continuum case would require a very large set of computational

molecules (since the 2-D DSMC method scales as 1/t(n2), and the very slow

moving thermal stress flow in the near-continuum limit would be extremely

difficult to resolve with DSMC statistics.

2.4.2 Role of microgravity

Microgravity conditions would not be needed to examine experimentally the

effect of thermal stress on normal stress in l-D, stationary nonisothermal

gases. The hydrostatic pressure gradient would be insignificant under the

Kn _ 0.1 conditions necessary to resolve thermal stress effects.

Because of the inability of current DSMC methods to model near-con-

tinuum flows, we do continue to see a potential for using microgravity to

examine the validity of the Burnett equations applied to 2-D nonisothermal

gases.

3 Project Accomplishments

3.1 Graduate students

Mr. Rong Wei (MS, 1999) performed DSMC and continuum calculations of

hard-sphere gas heat transfer and fluid flow in two-dimensional, rectangular



enclosures. His thesis examined the extent to which the Navier-Stokes-

Fourier formulation of transport, with slip and jump corrected boundary

conditions, could model heat transfer in rarefied gases with two-dimensional

temperature profiles.

Mr. Joseph Ragan (MS) is currently working on the simulation of gas

flow over heated surfaces that have directionally-dependent molecular ac-

commodation properties. He was partially supported by the project for the

first two quarters of 1999, and has recently received fellowship support from

the National Defense Science and Engineering Grant program.
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versity of Alabama at Birmingham, May 1999.
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der microgravity conditions," presented at the 1998 MSAD Fluid Physics
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Daniel W. Mackowski, Mechanical Engineering Department

Auburn University, AL 36849. dmckwski@eng.auburn.edu

1. INTRODUCTION

The continuum description of momentum and en-

ergy transport in gases, based upon Newton-Stokes-
Fourier constitutive relations, can become inaccurate in

rarefied or highly nonequilbrium regimes, i.e., regimes

in which the Knudsen number Kn (= AlL, where A is

the gas mean free path and L is the characteristic system
or gradient length) is no longer small. The Burnett

equations, which represent the order-Kn 2 solution to

the Boltzmann equation, ostensibly provide a means of

extending continuum formulations into the transitional

Knudsen regimes (,,_ Kn < 1).

The accuracy and validity of the Burnett equations,

however, have not been firmly established. As has

been noted by several authors, the asymptotic series

expansion of the molecular distribution function - from
which the Burnett equations are derived - has unknown

convergence properties for finite Kn. 1'2 The Burnett

equations can also lead to Second-law impossibilities,

such as heat flux in an isothermal gas. 3 Furthermore, the

Burnett equations increase the order of the differential

equations that govern momentum and heat transport in

the gas. Additional boundary condition information is

required to fully close the problem - yet such informa-

tion is generally not available from physical principles
alone.

Because of these issues, it is generally held that

the Burnett equations are valid only in regimes in which

the Navier-Stokes-Fourier level of approximation al-

ready provides an adequate description of transport, i.e.,
regimes in which the Burnett contributions represent

a small perturbation to heat and momentum transport.

Such conditions can be representative of high-Mach

number flows, for which application of the Burnett
equations appears to have been the most successful, a-r

On the other hand, there is not a broad understanding

of the accuracy of the Burnett equations when applied

to slow-moving, nonisothermal flow (SNIF) condi-

tions. As noted by Kogan, 'thermal stresses' (fluid

stresses resulting from temperature gradients - which
are predicted by the Burnett equations) could become

a significant convection mechanism in buoyancy-free,

nonisothermal gases, s'9 Indeed, it has been recently

suggested that thermal stress convection could affect

the growth of crystals in microgravity physical vapor
transport experiments, t°,l_

The work presented here consists of a theoreti-

cal and numerical examination of thermally-induced

stresses and flows in enclosed, highly nonisothermai

gases under buoyancy-free conditions. A central objec-

t ive has been to identify a strategy in which stress and/or

convection effects, as predicted by the Burnett equations,

could be isolated and measured in microgravity-based

experiments. Because of the questionable veracity of
the Burnett equations, a second objective has been to

test Burnett predictions of nonisothermal gas stress and
convection with the exact description provided by the
direct simulation Monte Carlo (DSMC) method.

2. PREDICTION OF THERMAL STRESS

CONVECTION

The initial phase of the project was aimed at cal-

culation, using continuum and DSMC methods, of gas

convection in two dimensional nonuniformly heated

rectangular enclosures. Typically, two adjacent surfaces
of the enclosure were modeled as adiabatic, zero-stress

surfaces (i.e., planes of symmetry), and the other two

adjacent surfaces were maintained at specified temper-

ature distributions with one surface transferring a net

amount of heat to the gas, and the other transferring the
heat from the gas.

The continuum formulations of momentum and en-

ergy transport are identical to Navier-Stokes-Fourier
models, with the exception of the Burnett stress tensor

in the momentum equations and the creep and jump

boundary conditions. For the conditions examined here

(i.e., slow-moving flow, with ReL << 1) the only sig-
nificant terms in the Burnett stress tensor relations will

be those involving temperature gradients. This thermal

stress component appears as 8'x_

#27_
TT-- p [_3(VVT-_ (V2T)I)

ws( 1 )]+ -_ (VT)(VT) - _(VT. VT) I (1)

in which /z is the dynamic viscosity, R is the gas

constant, and w3 and w5 are dimensionless, order-unity

coefficients which depend on the interaction potential of

the molecules. The creep and jump boundary conditions

appear

cs"R (VT- h OT)u- p _ (2)

CT ,k aT
r = T_ + _ c9--_- (3)
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where n is t he outward normal and the dimensionless co-

efficients cs and CT depend on the thermal and momen-
tum accommodation properties of the surface. 12 Nu-

merical solution of the governing equations was accom-
plished using the SIMPLER algorithm of Patankar. 13

Coefficients corresponding to hard-sphere molecules,

which gives a temperature-dependent viscosity of# -,-

T _/2, were used in the computations.

Direct simulation Monte Carlo calculations of

hard-sphere gas convection and heat transfer were

accomplished using the standard procedure developed

by Bird. 14'15 The cell size was nominally set to 0.1A0,

where Ao represents the mean-free-path at the equi-

librium state of the system, and 10-20 molecules were
assigned per cell. Simulations were conducted for a

Knudsen range of Kn = 0.01 - 0.2. Because thermal

creep and stress flows will be on the order of Kn times

the mean molecular velocity, resolution of the flows

using DSMC required simulation times on the order of
106-107 time steps.

Our continuum and DSMC calculations to date in-

dicate that it would be very difficult to create conditions
in the enclosure that result in measurable thermal stress

flows that are comparable to or larger than thermal

creep flows, and simultaneously maintain the Kn < 0.1

regime required of the Burnett equations. With the ex-

ception of the pure continuum limit (Kn --+ O, under
which thermal stress vanishes), elimination of ther-

mal creep cannot be accomplished by maintaining the

heated/cooled walls at uniform temperatures. Rather,

the discontinuity (or jump) between the surface and ad-

jacent gas temperatures - which will be proportional to
Kn and the local normal temperature gradient - will

lead to nonuniform gas temperatures along the nonuni-
formly heated surfaces. For all realistic values of Kn,

thermal creep flows generated by the temperature jump

effects were substantially larger than those resulting
from thermal stress.

To minimize the effects of creep, we performed
additional simulations in which the temperature dis-

tributions along the heated/cooled surfaces were as-

signed to provide, for a given Kn, nearly uniform gas

temperature adjacent to the surface. Surface tempera-
ture distributions were determined from solution of the

gas conduction equation with uniform gas temperature
boundary conditions along the heated/cooled surfaces,

and subsequent application of the solution into Eq. (3)

to predict T,_(z). This approach imposed a surface

temperature on the heated surface which increased to-
wards the junction with the cooled surface, with an

opposite trend along the cooled wall. The effect of

this strategy resulted in thermal creep flows that were

confined about the hot/cold junction, and left a bulk,
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Fig. 1: DSMC (top) and continuum (bottom) results

thermal-stress driven convection pattern in the bulk

of the enclosure. However, this strategy would also

lead to highly nonequitibrium conditions in the vicinity

of the hot/cold surface junction, for which the Burnett

equations are not expected to hold.

The comparison between continuum/Burnett and
DSMC predictions of convective flows in the enclo-
sure has been inconclusive. DSMC calculations have

shown convective flows that are qualitatively similar

than those predicted by the continuum model. As an
example, we show in Fig. 1 plots of velocity vec-

tors and isotherms, calculated using the DSMC (top)

and continuum (bottom) models, for a Kn = 0.02

hard-sphere gas contained in an enclosure with a rela-

tive temperature difference on the hot and cold wails of

2(TH - Tc)/(TH + Tc) = 1. The heated wall is on the

top, and the left and bottom walls are symmetry surfaces.
A strip of the walls adjacent to the hot/cold junction,

equal to 0.1 of the wall length, is held adiabatic, and the

remainder of the walls have temperature distributions

set to give isothermal gas conditions per the procedure
discussed above. Velocity vectors corresponding to ther-
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real creep along the adiabatic surfaces (seen in the tight

counterclockwise rotation in the upper right corner) have

been removed from the plot to allow resolution of the

thermal stress flows. The stress flow - as predicted by
the continuum model - results in a clockwise rotation

in the main body of the gas for the given conditions.

A similar pattern is seen in the DSMC results. We
cannot establish, however, whether the observed DSMC

flows result from thermal stress, or are due to slip ef-
fects at the walls. As mentioned above, the veracity of

the Burnett relations is also questionable for the highly

nonequilibrium conditions of the simulations. On the

other hand, temperature profiles calculated via DSMC

and continuum models show significant agreement.

3. THERMAL STRESS IN 1-O HEAT
TRANSFER

A simpler situation in which to compare contin-
uum/Burnett and DSMC predictions of thermal stress

effects is offered by I-D heat transfer in a stationary

gas. In this situation, the effects of thermal stress would

be seen in the pressure distribution and normal stress in
the gas. 16

The computational domain was now taken to be

a slab of gas contained between two parallel surfaces,

separated by a distance L, with the surfaces at z = 0

and L maintained at uniform temperatures of Tcs and
THS (with THS > Tcs), respectively. In nondimen-

sional form (with pressure and stress normalized with
the equilibrium pressure Pm and temperature by the

equilibrium temperature Tin), the Burnett equation for

the z-directed, normal component of the stress tensor
is7,17

= + -

0 '2 ]
+ 3o" + TJ (4)

In the above, ¢ = P/Pm, T* = r/Pm, 0 = T/Tm, the

prime denotes differentiation with respect to _ = z/L,

cl = (4_r/3)(5/16) 2 = 0.4091, and the dimensionless

w coefficients depend on the molecular interaction po-

tential. Since the gas is stationary and buoyancy-free,
the stress r will be a constant. In the limit ofKn _ O,

this gives the Navier-Stokes result of P = r = con-
stant. For finite Kn, however, the additional source

of thermal stress can act within the nonisothermal gas.

The magnitude of the thermal stress will vary with po-

sition - by virtue of the dependence of temperature and

temperature gradient on position - and consequently

pressure will vary to maintain a constant normal stress.

The Burnett equations make no contribution to the

heat flux for a stationary gas. Consequently, the gas

temperature will be described by

q* = constant = 01/20 ' (5)

where q* is the dimensionless heat flux (= qL/kTm).

Equation (5) can be used to combine the last two terms

in Eq. (4), which results in

= ° [('-Z--

] (6)

where c2 = (w3 - 2w5)/2 = 0.9900 for hard-sphere
molecules.

Two separate effects - or regimes - on _bcan be

anticipated from inspection of Eq. (6). One effect, which
is discussed by Kogan is and Makashev 19, derives from

the fact that the derivatives of ¢ will be multiplied by
the small parameter (for near-continuum conditions) of

Kn 2. The solution to Eq. (6) could therefore exhibit

'boundary layers' of width A,_ .,, Kn. It is shown below

that this property, combined with appropriate boundary

conditions, will allow for a limited description of the

Knudsen layers adjacent to the surfaces.

A second characteristic regime, as indicated by

Eq. (6), would occur outside the Knudsen layers. By
expanding ¢ in a power series of Kn 2, and neglecting

all terms higher than Kn 2, the pressure distribution in

the bulk gas would be given approximately by

cl c2( Kn q') 2
¢ _ r" + r'O (7)

As is evident from inspection of Eq. (7), thermal stress

would create a pressure gradient in the gas, with pres-

sure increasing towards the cooler regions in the gas.

The gradient would be proportional to the square of
Knq* .._ v/'OdO/d(x[),) - which can be interpreted as

a Knudsen number based on the characteristic length of

the temperature gradient (note that this quantity is inde-

pendent of L). It should be emphasized that the effect

predicted from Eq. (7) is fundamentally different than

the pressure gradient created by 'thermal transpiration'
of a gas in a tube with an imposed axial temperature

gradient. 2°,21 The latter is a result of thermal slip at the

walls of the tube, and leads to a pressure that increases in
the direction of increasing temperature. Thermal stress,

on the other hand, results from the effect of temperature

gradients on the molecular velocity distribution function

within the gas.

Although the thermal stress pressure gradient can

be labeled 'hydrostatic' - since the gas is at rest - it
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is distinctly different than that resulting from a gravita-
tional acceleration in the z-direction. Unlike the latter.

thermal stress would not result in a difference between

the normal forces acting on the hot and cold surfaces. In

other words, the 'pressure' measured at the surfaces -

which would physically represent the normal stress v -
would be identical for both surfaces•

Thermal stress, however, will result in a different

value of the normal stress than that predicted from the

Navier-Stokes level of approximation. This follows

from conservation of energy requirements• In particular,

the average pressure in the gas represents the equilib-
rium pressure that would be attained if the walls were

instantaneously made adiabatic. Since the equilibrium

pressure is used to normalize the dimensional pressure

P, this statement is equivalent to

/o = 1 (8)

Regardless of the values of q* and tfn, the pressure

distribution in the gas must satisfy the energy conser-

vation constraint implied by Eq. (8). Consequently, the

normal stress r* would be obtained as the eigenvalue

to Eq. (6) such that the solution (for specified boundary

conditions) satisfies Eq. (8). In general, this value will
be different than the Navier-Stokes result of 7-" = 1.

An approximate value for r* can be obtained by
neglecting the effects of the Knudsen layers at the

surfaces, for which the pressure distribution would be

given by Eq. (7). To order tfn 2, this gives 16

v* _ 1 - c_c2 (Knq') 2 (9)

This relatively-simple approximation indicates that
thermal stress will lower the normal stress in a closed

system relative to that predicted from the Navier-Stokes

level - although we note again that the effects of Knud-

sen layers have been neglected in the analysis,
The final elements required to close the prob-

lem are the boundary conditions for pressure. As is

the case with the Navier-Stokes approximation, the

boundary conditions for the Burnett equations should

represent an extrapolation of the solution across the

region, adjacent to the wall, where the solution is no

longer valid. Makashev 19 and Schamberg 22 have pro-

posed boundary conditions that are consistent with the
order-Kn 2 accuracy of the Burnett equations. The

accuracy of these approaches, however, has not been

well established. 23 Alternatively, order-I£n relations

can be derived for the pressure 'slip' adjacent to a heated
or cooled surface. 12,21 However, our work at this stage

is primarily concerned with determining whether there

are boundary conditions which, when coupled to the
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Figs. 2-4: DSMC and continuum pressure distributions

Burnett equations, can reproduce DSMC predictions of

pressure distribut ions in a nonisothermal gas. Therefore,

the pressures at the hot and cold surfaces were taken

to be parameters, and were chosen to provide the best

agreement between theory and DSMC results. The ob-
vious choice for the pressure at the surfaces will be the

values determined fi'om DSMC predictions.

Comparisons of Burnett (via numerical solution of

Eq. (6)) and DSMC predictions of pressure distribution

appear in Figs. 2-4. Each plot shows/'/7- = q_/7-" vs.
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zi = z/L for a fixed value of q', with Kn a parame-

ter. Two theoretical predictions of P/'r are shown for
each set of DSMC results. The first corresponds to the

numerical solution of Eq. (6), with boundary conditions

obtained from extrapolation of the DSMC-derived pres-

sures to the surfaces and temperatures predicted from

Eq. (5). The second represents the bulk gas thermal stress

pressure distribution predicted from Eq. (7), which does

not account for boundary effects. This latter predic-

tion has been shifted by a constant to match with the

full-Burnett solution at ,_ = 0.5.

As is evident from the results, the pressure profiles

show distinct Knudsen layers at both the cooled and

heated surfaces. The drop in pressure at the cooled
surface, and the increase in pressure at the hot surface,

are both consistent with the predictions of pressure slip
relations. 2t The pressure drop at the cold surface can
be considerable for the conditions examined here -

amounting to around an 8% decrease for Kn = 0.2 and

q* = 1.5.

The solutions of the Burnett equation, with DSMC

derived boundary conditions, are seen to capture the

essential features of the DSMC pressure distribution.

In particular, the solutions provide a good description

of the width and form of the Knudsen layers and the

pressure distribution outside the layers. The difference
between the theoretical and DSMC results is greatest at

the edge of the cold-surface Knudsen layers, for which

the theoretical model tends to overpredict the pressure.
This is most evident for the results corresponding to

q* = 2.0 in Fig. 4. Nevertheless, the fact that the

Burnett equations can resolve, to a reasonable accuracy,

the Knudsen layers at the surface is somewhat surprising

- especially when considering that the theory is based on

the order-Kn continuum temperature profile. We also

examined solut ions to Eq. (6) using boundary values of g)
that were different than the DSMC results, and found that

the exact, DSMC-derived boundary conditions provide

the best overall agreement between Burnett equation

predictions and DSMC results.

The DSMC results for q* = 2.0 appear to show

a pressure distribution in the bulk gas that is described

by Eq. (7). On the other hand, the pressure distribution
for q* = 1.5 and Kn = 0.2 (Fig. 3) - for which

Eq. (7) predicts a greater effect - is dominated by

the Knudsen layers extending from the surfaces. To
eliminate the effects of the Knudsen layers at the hot

wall, we performed additional DSMC calculations in

which the velocities of the incoming moleculesat the

hot boundary were sampled from the Chapman-Enskog

distribution function for the fixed values of q* and Kn.

By doing so, the hot surface now approximated an open

boundary. The corresponding DSMC results showed a
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Fig. 5: DSMC and continuum normal stress

pressure distribution in the bulk gas that was accurately

represented by Eq. (7).

A final comparison of theory and experiment can
be obtained from the dimensionless normal stress. The

simplified model of Eq. (9) indicates that r* should be

a function primarily of Knq*. Accordingly, we plot in

Fig. 5 the DSMC values ofT" vs. t(nq" for the seven
different combinations of Kn and q" that were used

in the closed system calculations (results of Figs. 2-4).
Theoretical results correspond to the derived eigenvalues

of Eq. (6) for the DSMC-derived boundary conditions,
and to the approximation given by Eq. (9).

The first point to make is that the predictions oft °

from full solution of the Burnett differential equation are

nearly equivalent to those obtained from the bulk-gas

approximation of Eq. (9). Evidently, the decrease in

pressure at the cold surface is compensated by the
increase at the hot, so that the Knudsen layers have

a small effect on the averaged pressure in the gas.

Secondly, the primary dependence of r* on Knq" is

supported in the DSMC results at Knq* = 0.1 and 0.2

- which each correspond to two combinations of Kn
and q°. As observed, the results are nearly identical

at these points. Finally, the theoretical predictions

are in excellent agreement with the DSMC results for

Knq" <_ 0.15, beyond which the theory overpredicts
the decrease in 7"*. As can be seen from the results, the

relative decrease in normal stress on the surfaces is quite

small, i.e., T* = 0.975 for q* = 2.0 and Kn = 0.2, or

a 2.5% decrease in 'measured' pressure at the surface.

We should emphasize, however, that this decrease is

still significantly larger than the numerical precision of
the DSMC simulations.

SUMMARY

The project has sought to ascertain the veracity of
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the Burnett relations, as applied to slow moving, highly 9

nonisothermal gases, by comparison of convection and

stress predictions with those generated by the DSMCIo

method. The Burnett equations were found to provide

reasonable descriptions of the pressure distribution and

normal stress in stationary gases with a 1-D temperature

gradient. Continuum/Burnett predictions of thermal
11

stress convection in 2-D heated enclosures, however,

are not quantitatively supported by DSMC results. For

such situations, it appears that thermal creep flows,
generated at the boundaries of the enclosure, will be 12

significantly larger than the flows resulting from thermal

stress in the gas. t3
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The Burnett equations have been shown to provide improved descriptions, relative

to the Navier-Stokes equations, of flow structure in high-velocity (i.e., hypersonic) gases.

We examine here the accuracy of the Burnett constitutive equation for fluid stress as ap-

plied to stationary gases. Specifically, we investigate the effects of 'thermal stress' (fluid

stress induced by a temperature gradient), as predicted by the Burnett equation, on the

pressure distributions and normal stress in a stationary, buoyancy-free, hard sphere gas

for the case of one-dimensional heat transfer. We show, using First-Law principles and

the Burnett equation, that thermal stress results in a reduction in normal stress in the

nonisothermal gas relative to that in the equilibrium state. The normal stress, in turn,

can be obtained as an eigenvalue to a second-order ordinary differential equation, repre-

senting the Burnett equation, for the pressure distribution in the gas. Simple asymptotic

solutions to the Burnett equation are developed, and are used in combination with order-

Kn pressure slip relations to formulate pressure boundary conditions at the heated and

cooled surfaces. The approximate solutions, as well as exact numerical calculations, are

compared with pressure distributions generated from the direct-simulation-Monte-Carlo

(DSMC) method. The Burnett and DSMC predictions of pressure are in good agreement

for effective Knudsen numbers (based on the temperature gradient in the gas) less than

0.1. In particular, the Burnett equations can provide a reasonable description of the Knud-

sen (or rarefaction) layers adjacent to the heated and cooled surfaces that bound the gas,

and can also describe the variation in pressure in the bulk gas. In addition, theoretical

predictions of the reduction in normal stress correspond well to DSMC-derived values.



I. BACKGROUND AND MOTIVATION

In 1938.Burnett developedanapproximate solution to the Boltzmann equation, based

upon the asymptotic expansionprocedureof Chapman and Enskog, that provided consti-

tutive relations accurate to order Kn 2 (where Kn = A/L is the Knudsen number, with

A and L the mean free path and characteristic system length). 1_2 Ostensibly, these re-

lations, commonly referred to as the Burnett equations, offered a means of extending

continuum-based descriptions of momentum and heat transport in a gas to transitional

Knudsen regimes. However, the accuracy and validity of the Burnett equations have not

been firmly established. As has been noted by several authors, the asymptotic series ex-

pansion of the molecular distribution function - from which the Burnett equations are

derived - has unknown convergence properties for finite Kn. 2'a Furthermore, the Burnett

equations increase the order of the differential equations that govern momentum and heat

transport in the gas. Additional boundary condition information is required to fully close

the problem - yet such information is generally not available from physical principles alone.

Lee 4 has recently shown that, as expected, the lack of higher-order boundary conditions,

coupled with the Burnett equations, can result in non-unique solutions of velocity, tern-

perature, and pressure in steady Couette flow. The Burnett equations can also lead to

Second-Law impossibilities in certain situations, such as a negative dissipation function or

a heat flux in an isothermal gas. 5'6

Because of these issues, it is generally held that the Burnett equations are valid only

in regimes in which the Navier-Stokes-Fourier level of approximation already provides an

adequate description of transport, i.e., regimes in which the Burnett contributions rep-

resent a small perturbation to heat and momentum transport. Such conditions can be

representative of high-Mach number flows, for which application of the Burnett equations

appears to have been the most successful. 7-1° On the other hand, there is not a broad

understanding of the accuracy of the Burnett equations when applied to slow-moving, non-

isothermal flow conditions. As noted by Kogan, 'thermal stresses' (fluid stresses resulting

from temperature gradients - which are predicted by the Burnett equations) could become

a significant convection mechanism in buoyancy-free, nonisothermal gases.11,12 Indeed,

it has been recently recognized that thermal stress convection could affect the growth of

crystals in highly-nonisothermal yet buoyancy-free microgravity physical vapor transport

experiments. 13,14

An estimation of the characteristic thermal stress velocity in slow-moving, nonisother-

mal flow conditions can be obtained from an order-of-magnitude analysis of the Burnett



equations, which yields 14

Vrs -L

where _ is the gas kinematic viscosity, and T and AT are the characteristic system temper-

ature and temperature difference, respectively. Assuming (AT)/T _ 1, the thermal stress

velocity will be on the order of the momentum diffusion velocity - which corresponds to

order-unity Reynolds flows. Such 'creeping' flows would, in principle, represent a small

perturbation from the zero velocity and constant pressure conditions that would be triv-

ially predicted by the Navier-Stokes equations (with no-slip boundary conditions). Yet

by this very reasoning, the presence of flows and pressure gradients in a nonisothermal,

buoyancy-free gas would be an unambiguous indication of the effects of thermal stress.

The objective of this paper is to, first of all, apply the Burnett equations to the

situation of one-dimensional heat transfer in a quiescent gas, and theoretically predict

the pressure distribution that is induced in the gas from thermal stress. Secondly, we will

employ the _numerical experiment' provided by the direct simulation Monte Carlo (DSMC)

method, applied to the same system, to ascertain the accuracy of the Burnett equation

predictions. We focus on pressure effects in a l-D, stationary, nonisothermal gas in the

absence of gravity, as opposed to 2-D gas motion induced by thermal stress, primarily

because the weak, order-Kn 2 convection predicted by the Burnett equations would be

difficult to resolve with DSMC statistics. In addition, a 2-D nonisothermal configuration

would re._ult in gas convection from thermal slip at the boundaries, which would interfere

with our intention of isolating the effects of thermal stress. 15'16

Investigations along the same lines as those conducted here have been recently per-

formed by Wadsworth 17 and Zhong and Koura is, who used DSMC to examine the accuracy

of continuum formulations (Navier-Stokes with or without the Burnett terms) for 1-D heat

transfer. In all previous examinations of which we are aware, the ability of the Burnett

equations to predict pressure distributions in a quiescent, non-isothermal gas has not been

addressed. One reason why this effect has escaped scrutiny, as will be shown below, is

that it is essentially negligible under moderately nonisothermal and near-continuum (e.g.,

Kn < 0.1) conditions. A second reason has been the lack of well-established boundary

conditions for pressure at a heated/cooled surface (i.e., pressure slip) which are consistent

with the order-Kn 2 accuracy of the Burnett equations. Our approach to this latter point

will be to develop, via a simple asymptotic analysis of the Burnett stress equation in the

Knudsen layer, a thermal stress correction to order-Kn pressure slip at the surfaces.



II. THEORETICAL FORMULATION

A. System Configuration and Problem Definition

The system, which is schematically illustrated in Fig. 1, consists of a stationary, hard

sphere monatomic gas that is contained between two parallel, infinite-area boundaries that

are separated by a distance L. A heat flux of q is flowing in the gas in the negative x

direction. The system is in steady-state, and gravity is absent.

To identify the relevant system parameters which affect the pressure distribution, we

present our analysis in a nondimensional form. The nondimensional temperature, pressure,

and position are defined
T P x

8= Tr---_-/' ¢- Pr4' _= _ (1)

where Tr4 and P_ef are an appropriate reference temperature and pressure, which are

defined below. We use the viscosity-based mean free path to define the Knudsen number;

Kn_ A,'4_ 16#,'el (RT,'ef) W2L 5LPref 2_ (2)

where R is the specific gas constant and # is the dynamic viscosity. The thermal con-

ductivity k is given by k = 15R#/4, and both k and # are proportional to T 1/2 for the

hard-sphere gas. Finally, the nondimensional heat flux and normal fluid stress are defined

as

qL 7-
q* - , 7-* -

k,'4T,4 P,4 (3)

B. Continuum Formulation

In nondimensional form, the Burnett equation for the x-directed, normal component

of the stress tensor is 4,1°

v* =¢+ --
cl Kn20

¢ M4-"_ W2 -_- 0")3 oH -+- _5 (4)

where the prime denotes differentiation with respect to _, cl = (4rr/3)(5/16) 2 = 0.4091,

and the dimensionless u; coefficients depend on the molecular interaction potential. For

hard-sphere molecules, the values are

w2 = 2.028, w3 = 2.418, _4 = 0.681, w5 = 0.219 (5)

We include the hydrostatic pressure P into our definition of the normal stress solely for

convenience. Since the gas is stationary and buoyancy-free, the stress T will be a constant.

4



In the limit of Kn _ O, this gives the Navier-Stokes result of P = r = constant. For finite

Kn, however, the additional source of thermal stress can act within the nonisothermal gas.

The magnitude of the thermal stress will vary with position - by virtue of the dependence

of temperature and temperature gradient on position - and consequently pressure will vary

to maintain a constant normal stress.

The Burnett equations make no contribution to the heat flux for a stationary gas.

Consequently, the gas temperature will be described by

q* = constant = 01/_0 _ (6)

This is integrated from _ = 0 (the cold surface) to yield

0-- (7)

As is well recognized, the dimensionless temperature 0c should not be interpreted as the ac-

tual gas temperature directly at the surface. Rather, it represents the extrapolation to the

surface of the temperature distribution outside the Knudsen (or rarefaction) layer. 17,19,2°

This 'apparent' gas surface temperature is related to the solid surface temperature, Ocs,

by a slip condition, which appears as

0c= 0cs(1+ Kn0Lo) (8)

in which ct is a constant. We use the value ct = 1.691, which was derived by Loyalka by

solution of the linearized Boltzmann equation for 1-D heat transfer in a hard-sphere gas

and for perfectly accommodating surfaces. 19 By setting _ = 1 in Eq. (7), the heat flux is

related to the hot-side boundary temperature by

=5

The corresponding slip condition at the hot surface is

(9)

(10)

For reasons which will become apparent in a following section, we will now define the

reference temperature Trel so that

(_01 _._) -I g13/2 --D3/2
= vg _c (11)

1 = 3(0_2 1/2-Oc )



By combining Eqs. (9) and (11), Oc and OH can be obtained as functions of q*, i.e.,

Note that the maximum value of q*, which corresponds to Oc -+ O, is 2v_ = 3.464.

Equation (6) can be used to combine the last two terms in Eq. (4), which results in

01¢1 i c2q,2
clKn2 0 w4_-w2 (13)

¢ 0

where c2 = (w3 - 2as)/2 = 0.9900. Equation (13) provides a second-order, nonlinear

ordinary differential equation for the pressure distribution in the gas. Complete solution

requires specification of the nondimensional stress T* and a pair of boundary conditions for

¢. Alternatively, the equation could be differentiated, which would eliminate T* yet add

an additional boundary condition for ¢ - since the equation would become third order.

We will work with the equation as it appears in Eq. (13), and employ thermodynamic

principles to infer the value of r*. Our approach is discussed in the next section.

C. Characteristics of Thermal Stress and Boundary Conditions

Equation (13) displays the characteristic stiff form of the Burnett equations, in which

the derivatives of the dependent variables (in this case ¢) are multiplied by the small

parameter Kn 2. Accordingly, the solution to Eq. (13) would be expected to display an

inner (or boundary layer) regime, in which the derivatives of ¢ contribute to the solution,

and an outer regime in which the derivatives have little effect. Kogan 21 and Makashev 22

have noted that this property of the Burnett equations, when combined with order-Kn 2

boundary conditions, would allow for a limited description of the Knudsen layers that

occur at the surface/gas interfaces.

We will ultimately use a numerical solution to Eq. (13) to make quantitative com-

parisons between the Burnett and DSMC predictions of pressure distribution. However,

insight into the effects of thermal stress on the pressure and normal stress in the gas - as

well as a check of the consistency of the solution with regard to Kn constraints - can be

obtained from relatively simple, order-Kn 2 asymptotic approximations to the inner and

outer solution regimes to Eq. (13).

The outer regime is examined first. By expanding ¢ in a power series of Kn 2, and

neglecting all terms higher than Kn 2, the pressure distribution in the bulk gas would be

given approximately by

clc2(Kn q,)2
¢ _ T* + _'*0 (14)

6



As is evident from inspection of Eq. (14), thermal stresswould create a pressuregradient

in the gas, with pressure increasing towards the cooler regions in the gas. The gradient

would be proportional to the squareof Knq* _ v/-OdO/d(x/.X) - which can be interpreted

as a Knudsen number based on the characteristic length of the temperature gradient (note

that this quantity is independent of L). Accordingly, the outer solution would be valid

only for Knq* << 1. It should be emphasized that the effect predicted from Eq. (14) is

fundamentally different than the pressure gradient created by 'thermal transpiration' of a

gas in a tube with an imposed axial temperature gradient.17"23 The latter is a result of

thermal slip at the walls of the tube, and leads to a pressure that increases in the direction

of increasing temperature. Thermal stress, on the other hand, results from the effect of

temperature gradients on the molecular velocity distribution function within the gas.

Even though the thermal stress pressure gradient can be labeled 'hydrostatic' - since

the gas is at rest - it is distinctly different than that resulting from a gravitational acceler-

ation in the x-direction. Unlike the latter, thermal stress would not result in a difference

between the normal forces acting on the hot and cold surfaces. In other words, the 'pres-

sure' measured at the surfaces - which would physically represent the normal stress T -

would be identical for both surfaces.

Thermal stress, however, will result in a different value of the normal stress than that

predicted from the Navier--Stokes level of approximation. This follows from conservation

of energy requirements. In particular, the average pressure in the gas, given by

1/0Pm= --£ P dx = --£ pT dx

represents the equilibrium pressure that would be attained if the walls were instantaneously

made adiabatic. If the reference pressure is defined as P_ef = Pro, the above equation is

equivalent to

fo 1Cd( = (15)
1

Regardless of the values of q* and Kn, the pressure distribution in the gas must satisfy

the energy conservation constraint implied by Eq. (15). Consequently, the normal stress

7-* would be obtained as the eigenvalue to Eq. (13) such that the solution (for specified

boundary conditions) satisfies Eq. (15). In general, this value will be different than the

Navier-Stokes result of v* = 1.

An approximate value for T* can be obtained by neglecting the effects of the Knudsen

layers at the surfaces, for which the pressure distribution would be given by the outer

7



solution of Eq. (14). Integration of this equation over ( gives

fo ctc2(Knq*)2 ft d( 7-*Cd_= 1 _ r* + T* JO Om
+

where we have used the definition of the reference temperature per Eq. (11).

Eq. (16) for 7" yields

' [1, ]
which, to order Kn 2, is

(16)

Solving

(17)

7" _ 1 - ClC2 (Kn q.)2 (18)

This relatively-simple approximation indicates that thermal stress will lower the normal

stress in a closed system relative to that predicted from the Navier-Stokes level - although

we note again that the effects of Knudsen layers have been neglected in the analysis.

We turn now to an examination of the Knudsen layer region adjacent to the cold

surface (an analysis at the hot surface would follow an analogous approach). Our objective

here is to obtain a simple description of the boundary layer behavior predicted by Eq. (13).

To do this, we assume that the Knudsen layer introduces an order-Kn perturbation in the

pressure field - which is based the fact that pressure slip at a heated/cooled surface occurs

at the order-Kn level. 17,19 Accordingly, the pressure distribution in the Knudsen layer is

estimated by superimposing the average bulk effect, given by Eq. (14), with an order-Kn

undetermined function fl, via

¢inne," = 7" + Kn f l + Kn 2 b (19)

in which b = ctc2q*2/(r * -Oc), with 0c representing the average temperature in the Knudsen

layer, i.e., the average from _ = 0 to OcKn. We now replace this form into Eq. (13),

substitute ( with the stretched variable 7/= _/Kn, expand the equation in powers of Kn,

and retain terms to order-Kn. This gives the simple differential equation

d2 fl

drl2 a fl = 0 (20)

where a = T*2/(ClW20_) is an order-unity constant.

pressure is assumed to be in a similar form as Eq. (19);

The surface boundary condition for

¢(0) - ¢c = r* + Kn f,c + Kn2b (21)



and the outer boundary condition has ft --_ 0 for r/ --_ _c. Upon solution of Eqs. (20) and

(21), the inner pressure distribution approximation is

O  ner= "*+ Kn2b+ (*C--"*-- 2b)exp (22)

A composite solution, which approximates the pressure distribution in both the inner and

outer regimes, is obtained by combining Eqs. (22) and (14), and adjusting the result by a

constant to maintain the ¢(0) = ¢c condition. This results in

[ ( 1 1)] (v/d)¢ _. T* + Kn 2 b l +-Oc 0(_) Oc + (¢c-r*-Kn 2 b) exp -K--nn _ (23)

Since 1 - -Oc/Oc _ O(Kn), the outer part of this approximation is consistent, to order

Kn 2, to that in Eq. (14).

The boundary layer effect is observed, in this simplified analysis, in the exponential

decay of pressure from the boundary to the freestream value. The characteristic width of

the layer will be A_ ._ Kn/v,Z _ KnOc, i.e., proportional to the local mean free path, as

expected. In addition, the pressure gradient at the surface, which is approximated by

de _-+o vfa
--
d_ - ) _ + O(gn2)

is order unity since ¢c - 7-* is order-Kn. Consequently, the solution maintains the con-

straint that Kn ¢' << 1 within the Knudsen layer, providing that Kn << 1.

The final elements required to close the problem - and allow for a quantitative compar-

ison between the Burnett equation and DSMC predictions - are the boundary conditions

for pressure. In formulating the problem for the inner solution, we posed the bound-

arv conditions simply as a specified pressure directly at the surface. More precisely, the

boundary conditions should represent an extrapolation of the continuum solution across

the A_ _ Kn 2 region adjacent to the wall (the 'Burnett sublayer') within which the Burnett

equation is no longer valid. Makashev 22 and Schamberg 24 have derived boundary condi-

tions that are consistent with the order-Kn 2 level of the Burnett equations. However, the

accuracy of these approaches has not been rigorously established is, nor are we aware of

order-Kn 2 relations specifically for the pressure 'slip' at a heated or cooled surface. It

should be noted that in application of the Burnett equations to 1-D hypersonic flow -

which resulted in an improved description of shock structure relative to the Navier-Stokes

solution - surface boundary conditions were obtained from order-Kn slip relations. The

rationale for this approach was that the flow adjacent to the surfaces (within the Prandtl



boundary layer) could be well described in the Navier-Stokes level, and Burnett effects

would only become significant within the shock wave itself, lo

This is not the case in the problem examined here. as thermal stress will affect the

pressure field throughout the heat flow domain. However, following the rationale used to

develop the inner solution, we submit that an order-Kn pressure slip relation can be used

as a boundary condition, providing that it is corrected for the order-Kn 2 bulk thermal

stress effect in the Knudsen layer. Specifically, the quantity fie appearing in Eq. (21)

would be related to the pressure slip at the cold surface via

ftc = _nn (¢c - 4c,_) =-¢c,_cp8 C (24)
Kn --+ O

in which ¢c,_ is the 'freestream' pressure adjacent to the cold gas, 8_ is the temperature

gradient at the surface, and cp is a constant. We now assume that ¢c,_ is given by the

bulk distribution averaged across the Knudsen layer, per the procedure in Eqs. (19) and

(21). This results in

(Clc2q'2)¢c = (1- K, cpOb)+ \ (25)

The value of cv can be estimated from the results of Loyalka 19 and Sone et al. 12, who

calculated the distributions of temperature and density in the Knudsen layer of a heated,

hard-sphere gas by numerical solution of the linearized Boltzmann equation. The pressure

at the surface would be obtained from the product of temperature and density at. the

surface, which, to order Kn, yields Cp = 0.1913.

III. NUMERICAL COMPUTATION

A. Direct Simulation Monte Carlo method

The 1-D DSMC procedure used to calculate the density, temperature, and pressure

is based on a code used in an earlier investigation 15, and follows that developed by Bird. 25

Because of the highly nonisothermal conditions of the simulations, a nonuniform grid was

employed in which the length Ax of each cell (or control volume) was set at 0.025-0.1 of

the local mean free path as estimated from the continuum temperature profile. This is

equivalent to maintaining a nominally constant number of computational molecules per

cell. Typically, 20 molecules were assigned per cell, and the time step in the simulations,

At, was 0.0125-0.05 of the average collision time. Collisions between pairs of molecules in

a cell were simulated using the no-time-counter approach.
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Calculations proceededfrom an initial equilibrium state corresponding to the refer-

ence temperature and pressureof the gas. Sampling of molecular properties was begun

after a fixed period (typically around 1000collision times) from the starting point, to elim-

inate bias in the final results from the initial state. Properties of the bulk gas (density,

temperature, pressure)were obtained from time averagesof molecular properties sampled

from eachcell. The heat flux and normal stress were obtained from recording of the net

molecular momentum and kinetic energytransport at the boundaries.

All DSMC calculations wereperformed ona SUN Ultrasparc-I workstation. Presented

results correspond to averagestaken over 2 x 10r - 4 x 10 r times steps - which required

run times of 3-5 days on our machine. The large amount of averaging was required to

reduce the noise (i.e., natural fluctuations) in the pressure profiles to a point that allowed

comparison with the theoretical, continuum-based predictions.

B. Numerical Solution of Continuum Model

A finite difference method was used to numerically solve Eqs. (13) and (25) (and the

corresponding boundary condition at the heated surface) for the pressure distribution. The

domain was discretized onto a uniform mesh, and central differences were used to represent

the pressure derivatives. The resulting difference equations were solved iteratively for the

nodal values of ¢, using an initial value of r* estimated from Eq. (17). The integral of

¢ over the domain was then computed using a trapezoid rule, and this value was divided

into 7" to obtain a new estimate of the normal stress. The procedure was then repeated

until the relative change in T* decreased below 10 -6. Note that the convergence in T* to a

constant implies that the calculated pressure field obeys Eq. (15). The solution procedure

was stable for all values of Kn and q* presented here, and the calculated values of ¢ and

r* were independent of the initial values used in the iterations. Typically, 200 mesh points

were used in the calculations. In all cases, presented results are within 0.5% of the values

obtained when the number of mesh points was doubled.

IV. RESULTS

We begin by examining the behavior of the gas that is contained between two solid,

perfectly-accommodating surfaces. Dimensionless wall temperatures, for the DSMC cal-

culations, were calculated from Eqs. (8) and (10) for set values of q* and Kn. Three values

of q* (= 1.0, 1.5, and 2.0) and three of Kn (= 0.05, 0.10, and 0.20) were used in the

simulations. Listed in Table I are the values of Ocs, Oc, OH, and OHS, calculated from the

11



slip/continuum relations, correspondingto the q* and Kn combinations.

The simulations presented here can represent highly nonequilibrium conditions. In the

case of q* = 1.5 and Kn = 0.2, the ratio OHS/OCS which represents the ratio of the hot

and cold surface temperatures - is around 23. Although such temperature gradients are

obviously not representative of 'common' heat transfer applications, we found it necessary

to include these cases to create situations in which the effects of thermal stress on pressure

became clearly apparent.

Figure 2 presents temperatures, calculated from DSMC simulations, for q* = 1.5 and

Kn = 0.05, 0.1 and 0.2. Shown also is the continuum prediction from Eq. (7). The

dimensionless continuum prediction is independent of Kn - since it is based on the heat

flux in the gas and not on the surface temperatures. The results are entirely consistent

with previous DSMC investigations of 1-D heat transfer. 17'1s The DSMC and continuum

temperatures are in good agreement in the bulk gas - which supports the accuracy of

the temperature slip conditions. The breakdown of the continuum model is also clearly

evident within the Knudsen layer adjacent to the hot wall - which, as expected, increases

approximately linearly in thickness with increasing Kn.

Comparison of the DSMC and Burnett predictions of pressure distribution appear in

Figs. 3-5. The quantity C/T* = P/T, where T is the DSMC-calculated normal stress, is

plotted vs. _ for q* = 1.0 (Fig. 3), 1.5 (Fig. 4), and 2.0 (Fig. 5). The Knudsen number Kn

is a parameter in each plot. We present C/r*, rather than ¢, in order to separate the curves

and to illustrate the disparity between the pressure and the normal stress. Two theoretical

predictions of PIT are shown for each set of DSMC results. The first corresponds to the

numerical solution of Eq. (13) with boundary conditions given by Eq. (25) and temper-

atures predicted from Eq. (7). The second represents the outer approximation given by

Eq. (14), in which T* is predicted by Eq. (17). This second curve has been adjusted by a

constant to match the numerical solution results at _ = 0.5.

As is evident from the DSMC results, the pressure profiles show distinct Knudsen

layers at both the cooled and heated surfaces, with pressure decreased and increased rela-

tive to the freestream values at the cold and hot surfaces, respectively. The pressure drop

at the cold surface can be considerable for the conditions examined here - amounting to

around an 8% decrease for Kn = 0.2 and q* = 1.5.

The numerical solution of the Burnett equation, with the corrected slip boundary

conditions, is seen to capture the essential features of the DSMC pressure distribution.

In particular, the solution provides a reasonable description of the width and form of the

12



Knudsen layers and the pressuredistribution outside the layers. The difference between

the theoretical and DSMC results is greatest at the edge of the cold-surface Knudsen

layers, and, as expected, this difference increaseswith increasing Kn and q*. The same

trends are seen in the differences between the DSMC pressures at the surface and those

calculated by Eq. (25), yet this difference is no larger than 10%, on a relative basis,

for the conditions examined here. We also examined solutions to Eq. (13) in which the

thermal stress correction was removed from Eq. (25), and these results were in considerably

less agreement with the DSMC values. Furthermore. solutions to Eq. (13) that used

boundary conditions derived from the DSMC pressures at the surface (i.e., 'exact' boundary

conditions) did not result in a significantly better fit with the DSMC pressure distributions

than those generated with Eq. (25).

A comparison of the DSMC, numerical Burnett solution, and composite inner asymp-

totic approximation of Eq. (23) is presented in Fig. 6, for the conditions given in Fig. 4

(i.e., q* = 1.5). We use a value of r* in Eq. (23) corresponding to that predicted from

Eq. (17) and boundary conditions at { = 0 are obtained from Eq. (25). Note that Eq. (15)

would not hold for Eq. (23), since the solution cannot match both boundary conditions.

Results are shown for { = 0 to 0.2. The inner and full-Burnett solutions are practically

indistinguishable for Kn = 0.05 and 0.1, yet for Kn = 0.2 there is a substantial diver-

gence between the two results in the freestream. This latter difference indicates that 'bulk'

conditions are not attained for the given conditions, i.e., the Knudsen layers affect the

pressure distribution throughout the heat flow domain. The same conclusion can be in-

ferred from comparison of the outer approximations and Burnett predictions in Figs. 3 and

4 for Kn = 0.2. On the other hand, the outer distribution in pressure is evident in the

results for smaller Kn (i.e., Fig. 5).

As can be theoretically inferred from Eq. (23), as well as by inspection of Figs. 3 and 5,

decreasing Kn while maintaining Kn q* constant results in progressively narrower Knudsen

layers, for which the effects of thermal stress in the bulk gas can be better observed. It

would be impractical to perform DSMC calculation for values of q* much larger than the

maximum of 2.0 used here. We can, however, alter the DSMC boundary conditions at

= 1 to model molecular conditions in the bulk gas, as opposed to molecular reflection

from a solid surface. This approach will, in principle, eliminate the Knudsen layer effects

at _ = 1, and thus better isolate the effects of thermal stress.

Following this rationale, we performed additional DSMC calculations on the 'open'

boundary system. To maintain zero net mass flux at the { = 1 boundary, a new molecule
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wasreleasedinto the system every time a molecule left the system by crossingsc = 1. The

velocity components of the released molecule were randomly sampled from a Chapman-

Enskog distribution function, with probability given by

=[ (p(u *, s*) = -u*s*e -_' -" 1 - Du* u .2 + s .2 (26)

In the above,
U

u*-- _ (27)

is the dimensionless axial thermal velocity of the molecule, s* = x/v .2 + w "2 is the dimen-

sionless radial molecular velocity, and

D- 15v/-_ )_ dT x=L 15V/-_ Knq*16 TH _xx = 16 _1/2-
_'H

(28)

Note that the constant D is chosen to simulate a heat flux of q* entering through the hot

boundary, which is maintained at a temperature of OH. An acceptance-rejection procedure

was used to sample velocities from Eq. (26). Aside from the changed distribution function,

the computational procedure remained the same as before. Calculations were performed

for Kn = 0.1 (i.e., the system outer boundary is located at 10Ar4), and q* was set to 1.0,

1.5, and 2.0. The value of OH used in Eq. (26) is the same as that listed in Table I for the

corresponding value of q*. For q* = 2.0, the value of D is 0.228 - which is near the limit

of validity of the Chapman-Enskog distribution function. 25

DSMC results of temperature for the open-boundary system, and the continuum

predictions given by Eq. (7), appear in Fig. 7. Knudsen layers are no longer observed

at _ = 1, which is indicated by the close correspondence of the DSMC and continuum

predictions throughout the system. Pressure distribution results are plotted in Fig. 8.

Theoretical predictions again correspond to the full solution of Eq. (13) and the outer

approximation of Eq. (14). The boundary condition at _ = 1 for the numerical solution

has now been changed to remove the slip effect (i.e., Cp = 0 in Eq. (25) for ( = 1). As was

the case with the temperature profiles, the DSMC pressure distributions do not show the

presence of Knudsen layer effects at ( = 1. For q* _< 1.5, the DSMC pressure distribution

in the bulk gas is seen to correspond closely to the prediction of Eq. (14) - which in turn

matches the distribution predicted by the full solution of Eq. (13). These results indicate

that the bulk-gas pressure distribution is a direct effect of temperature gradients within

the gas - and is not the result of nonequilibrium at the surfaces.
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A final comparison of theory and experiment can be obtained from the dimensionless

normal stress. The simplified model of Eq. (17) indicates that r* should be a function

primarily of Kn q*. Accordingly, we plot in Fig. 9 the DSMC values of r* vs. Kn q* for the

seven different combinations of Kn and q* that were used in the closed system calculations

(results of Figs. 3-5). Theoretical results correspond to the derived eigenvalues of Eq. (13)

and to the approximation given by Eq. (17).

The first point to make is that the predictions of T* from full solution of the Burnett

differential equation are closely equivalent to those obtained from the outer approximation

of Eq. (17). Evidently, the decrease in pressure at the cold surface is compensated by

the increase at the hot, so that the Knudsen layers have a small effect on the averaged

pressure in the gas. Secondly, the primary dependence of 7" on Knq* is supported in

the DSMC results at Knq* = 0.1 and 0.2 - which each correspond to two combinations

of Kn and q*. As observed, the results are nearly identical at these points. Finally, the

theoretical predictions are in excellent agreement with the DSMC results for Kn q* <_ 0.15,

beyond which the theory overpredicts the decrease in 7-_. As can be seen from the results,

the relative decrease in normal stress on the surfaces is quite small, i.e., r* = 0.975 for

q* = 2.0 and Kn = 0.2, or a 2.5% decrease in 'measured' pressure at the surface. We

should emphasize, however, that this decrease is still significantly larger than the numerical

precision of the DSMC simulations.

V. SUNINIARY

This investigation has compared Burnett equation predictions of pressure distribution

and normal stress with DSMC results for 1-D heat transfer in a stationary, hard-sphere gas.

For Kn q* less than around 0.1 - 0.15, our results show that the theoretical pressure profiles

can reasonably match those obtained from DSMC. The pressure distribution within the

Knudsen layer is consistent with an order-Kn asymptotic solution of the Burnett equation.

Likewise, a simplified outer solution to the Burnett equation, which neglects Knudsen layer

effects at the surfaces, gives an accurate prediction of the reduction in normal stress due

to thermal stress, for the same constraint on Kn q*.

We conclude by emphasizing that our findings do not imply that the Burnett equations

and the derived pressure boundary conditions will remain valid when applied to more

complicated heat and momentum transfer configurations such as those involving gas

flows and velocity gradients. Indeed, the stationary, I-D system examined here probably

represents the most simple configuration in which thermal stress effects could be isolated.
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In this sense,a fatal flaw in the Burnett equations would have been revealed by a lack

of correspondencebetween the experimental (i.e., DSMC) observations and theoretical

predictions of pressureand stressin this system. The results of this investigation, however,

proveotherwise,and hopefully will encourageothers to examinethe veracity and usefulness

of the Burnett equationsin practical rarefied gasdynamics applications.
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q* Kn Ocs Oc OH OIlS

1.0 0.10 0.4451 0.5469 1.5364 1.7791

1.0 0.20 0.3753 0.5469 1.5364 2.1129

1.5 0.05 0.2986 0.3615 1.8260 2.0151

1.5 0.10 0.2543 0.3615 1.8260 2.2479

1.5 0.20 0.1961 0.3615 1.8260 2.9235

2.0 0.05 0.1528 0.2092 2.1241 2.4029

2.0 0.10 0.1203 0.2092 2.1241 2.7659

TABLE I. Dimensionless surface and gas temperatures.



Figure Captions

1. Problem schematic

2. DSMC and continuum dimensionless temperature distributions vs. dimensionless po-

sition, q* = 1.0.

3. DSMC and continuum pressure distributions, vs. dimensionless position, q* = 1.0.

4. DSMC and continuum pressure distributions, vs. dimensionless position, q* = 1.5.

5. DSMC and continuum pressure distributions, vs. dimensionless position, q* = 2.0.

6. DSMC, exact Burnett, and asymptotic approximation pressure distributions, vs. di-

mensionless position, q* = 1.5.

7. DSMC and continuum temperature distributions, open system.

8. DSMC and continuum pressure distributions, open system.

9. DSMC and continuum predictions of dimensionless normal stress, vs. Kn q*.
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