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Abstract

A surface integral formulation is developed for the T matrix of a homogenous and
isotropic particle of arbitrary shape, which employs scalar basis functions represented
by the translation matrix elements of the vector spherical wave functions. The formu-
lation begins with the volume integral equation for scattering by the particle, which is
transformed so that the vector and dyadic components in the equation are replaced with
associated dipole and multipole level scalar harmonic wave functions. The approach
leads to a volume integral formulation for the T matrix, which can be extended, by
use of Green’s identities, to the surface integral formulation. The result is shown to be
equivalent to the traditional surface integral formulas based on the VSWF basis.

Key words: Electromagnetic scattering, T matrix method

1. Introduction and motivation

The purpose of this note is to revisit the derivation of the transition (a.k.a., T ) matrix
for a homogeneous particle of arbitrary shape. The seminal work on this subject was
performed by Waterman [1], the result of which was computational scheme that has
various technical names, e.g., extended boundary condition method, null field method,
yet which is commonly referred to, among the scattering community, as ”the T matrix
method”. Waterman’s derivation begins with the vector Huygen’s principle, which states
that the exciting electric field inside the particle, and the scattered field outside the
particle, can be related to the distribution of the tangential components of electric and
magnetic field on the surface of the particle. A representation of the surface fields in
a vector spherical wave function (VSWF) basis ultimately leads to a formula for the
T matrix which involves integrals, over the particle surface, of vector products of the
VSWF. Improvements in the formulation computational scheme have been developed
over the years, to address highly aspherical particle shapes, chiral media, etc. [2, 3].

An alternative method for T matrix calculations is via volume integral methods,
such as the discrete dipole approximation (DDA) [4]. Recently, Litvinov demonstrated
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Figure 1: System configuration

that, as would be expected, Waterman’s surface integral T matrix formulation can be
derived from the volume integral equation (VIE) formulation of Maxwell’s time harmonic
equations [5].

This paper will follow the same basic path as that cut by Litvinov, in that the analysis
will begin with the VIE and will end with a surface integral T matrix formula. The main
difference, however, is how the associated formulas are represented. In particular, the
VIE will be transformed, at the outset, into a scalar form that employs the VSWF
translation elements as basis functions. Subsequent operations and transformations on
the VIE, leading to the T matrix formulas, can then be done almost entirely in a scalar
representation.

2. Formulation

Consider a particle of arbitrary shape, as illustrated in Fig. (1). The particle is taken
to be homogeneous and isotropic in composition, and characterized by a complex relative
refractive index m. The medium in which the particle is immersed is taken to be non
absorbing. The interior and exterior regions of the particle are denoted as Vint and Vext.
Coupled with these volumes are two additional regions to be used in the formulation,
which are defined by the circumscribing (radius rC) and inscribing (radius rI) spheres
centered about a fixed origin r0 of the particle. The region Vext,C is that external to the
circumscribing sphere, and Vint,I is internal to the inscribing sphere.

The electromagnetic scattering problem is typically described in a dynamical sense,
i.e., a particle is excited by a incident field, which produces a scattered wave which
propagates away from the particle. In a more mathematically consistent description –
which recognizes that the time variable is removed in the time harmonic formulation –
the exciting field is the field which exists in the overall system when the particle is absent,
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and the problem is to predict the new field which results when the particle is present.
The scattered field, in this context, is the difference between the external fields with and
without the particle present [6, 7].

Since the exciting field contains no singularities in the vicinity of the particle, it can be
described mathematically as an expansion of regular VSWF centered about the particle
origin. The scattered field, on the other hand, is described by an expansion of outgoing
VSWF about the particle origin, in order to automatically satisfy the far–field radiation
condition [6]. The particle T matrix provides the relationship between the expansion
coefficients for the exciting and scattered fields, so that

Esca =
∞∑

n=1

n∑
m=−n

2∑
p=1

amnp N
(3)
mnp(k0(r− r0)) (1)

amnp =

∞∑
l=1

l∑
k=−l

2∑
q=1

Tmnpklq fklq (2)

Eexc =
∞∑

n=1

n∑
m=−n

2∑
p=1

fmnp N
(1)
mnp(k0(r− r0)) (3)

where k0 = 2π/λ is the wavenumber in the host medium, λ is the corresponding wave-
length, and N(1) and N(3) denote the regular and outgoing VSWF. These functions, and
their associated properties, will be described in a subsequent section; for now the analysis
will turn to the VIE.

In the VIE formulation, the electric field at some point r is governed by

E(r) = Eexc(r) + k20
(
m2 − 1

) ∫
Vint

G(k0(r− r′)) ·E(r′) dr′ 3 (4)

in which Eexc(r) is the exciting field and G(k0(r − r′)) is the free space dyadic Green’s
function, defined by

G(k0(r− r′)) =

(
I+

1

k20
∇⊗∇

)
exp(ik0 |r− r′|)

4π |r− r′|
(5)

where ⊗ denotes the dyadic product of two vectors.
An operator–based solution to Eq. (4) can be constructed by defining a dyadic tran-

sition operator T (r, r′) so that, in regions within the particle [8, 9],

Eint(r) =
1

k20(m
2 − 1)

∫
Vint

T (r, r′) ·Eexc(r
′) dr′ 3, r ∈ Vint (6)

Replacing this into Eq. (4), and constraining r to lie within Vint, gives∫
Vint

[
1

k20(m
2 − 1)

T (r, r′)

− δ(r− r′) I−
∫
Vint

G(k0(r− r′′)) · T (r′′, r′) dr′′ 3

]
·Eexc(r

′) dr′ 3 = 0, r ∈ Vint (7)
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This relation will identically hold providing T (r, r′) satisfies

T (r, r′) = k20(m
2 − 1)

(
δ(r− r′) I+

∫
Vint

G(k0(r− r′′)) · T (r′′, r′) dr′′ 3
)
, r, r′ ∈ Vint

(8)
and a general volume integral relation for the field at all points r can now appear as,

E(r) = Eexc(r) +

∫
Vint

G(k0(r− r′′)) ·
∫
Vint

T (r′′, r′) ·Eexc(r
′) dr′ 3 dr′′ 3 (9)

By using Eq. (6) in Eq. (4), the relationship between the scattered and exciting fields
becomes

Esca(r) = E(r)−Eexc(r)

=

∫
Vint

G(k0(r− r′)) ·
∫
Vint

T (r′, r′′) ·Eexc(r
′′) dr′′ 3 dr′ 3, r ∈ Vext (10)

Equation (10) will provide the basic starting point to identifying the particle T matrix.
Indeed, with some imagination, Eq. (10) can be seen as analogous to the VSWF T matrix
relationships: the former involves a double integration over the particle volume, whereas
the latter involves a double summation (i.e., the row and the column order/degree/mode
indices) over the particle T matrix. Derivation of the T matrix from the VIE transi-
tion dyad will therefore involve the integral transformation of a spatial distribution into
a VSWF expansion. Before proceeding down this path, however, it will be useful to
introduce the needed features of the VSWF.

2.1. Vector spherical wave function background

The VSWF, of type t = 1 (regular) and t = 3 (outgoing), and order n, degree m, and
mode p = 1 (TM) and p = 2 (TE), are defined here by

N
(t)
mn2(k r) =

(
2

n(n+ 1)

)1/2

∇×
(
rψ(t)

mn(k r)
)

(11)

N
(t)
mn1(k r) =

1

k
∇×N

(t)
mn2(k r) (12)

where ψ denotes the scalar wave function;

ψ(t)
mn(k r) =

{
jn(kr)Ymn(cos θ, ϕ) t = 1
hn(kr)Ymn(cos θ, ϕ) t = 3

(13)

with jn and hn = jn + i yn denoting the spherical Bessel and Hankel functions and Ymn

denoting the spherical harmonic,

Ymn(cos θ, ϕ) =

(
2n+ 1

4π

(n−m)!

(n+m)!

)1/2

Pm
n (cos θ) eimϕ (14)

An essential component in transforming the VIE will be the ability to translate the
basis functions from one coordinate origin to another. Translations of the VSWF are
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performed by application of the addition theorem for VSWF, which, for the problem at
hand, will appear as [10, 11],

N(1)
mnp(k(r− r′)) =

∞∑
l=1

l∑
k=−l

2∑
q=1

Jklq mnp(−k r′)N
(1)
klq(k r) (15)

N(3)
mnp(k(r− r′)) =

∞∑
l=1

l∑
k=−1

2∑
q=1

Jklq mnp(−k r′)N
(3)
klq(k r) |r′| < |r| (16)

N(3)
mnp(k(r− r′)) =

∞∑
l=1

l∑
k=−1

2∑
q=1

Hklq mnp(−k r′)N
(1)
klq(k r) |r′| > |r| (17)

in which J and H are the regular and outgoing VSWF translation matrices; the elements
of these identically satisfy the scalar Helmholtz equation and involve expansions of the
type 1 and 3 scalar wave functions. The summation over order l in Eqs. (15)–(17)
formally appears as an infinite sum, yet it is understood that the series will converge to
an arbitrarily small error in a finite number of orders, providing the convergence radii
criteria are met.

Equations (15–17) can be used to infer the following translation and factorization
properties of the translation matrices,

Jmnpklq(k(r− r′)) =
∞∑

n′=1

n′∑
m′=−n′

2∑
p′=1

Jmnpm′n′p′(k(r− r0)) Jm′n′p′ klq(k(r0 − r′)) (18)

Hmnpklq(k(r− r′)) =
∞∑

n′=1

n′∑
m′=−n′

2∑
p′=1

Jmnpm′n′p′(k(r− r0))Hm′n′p′ klq(k(r0 − r′)),

|r− r0| < |r0 − r′| (19)

Hmnpklq(k(r− r′)) =
∞∑

n′=1

n′∑
m′=−n′

2∑
p′=1

Hmnpm′n′p′(k(r− r0)) Jm′n′p′ klq(k(r0 − r′)),

|r− r0| > |r0 − r′| (20)

In the formulation developed here, the translation elements will take on a somewhat
more elevated role, that being the set of basis functions for representing the fields in
the VIE. This will have two distinct advantages in the formulation, being 1) the vector
problem is reduced to a scalar problem, and 2) the basis functions become ”transparently”
translatable, as the components of the translation operation become the basis functions
themselves. An equivalence between the VSWFs and the translation matrix elements
can be obtained by letting |r| → 0 in Eqs. (15) and (17), for which the only surviving
terms are those for the electric dipole (l = q = 1); this results in

N(1)
mnp(k r) =

√
1

3π

1∑
k=−1

Pk Jk11mnp(k r) (21)

N(3)
mnp(k r) =

√
1

3π

1∑
k=−1

PkHk11mnp(k r) (22)
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in which Pk is a unit magnitude cartesian vector given by

P−1 =
1√
2

 1
−i
0

 , P0 =

0
0
1

 , P1 =
−1√
2

1
i
0

 (23)

The salient point here is that Eqs. (21) and (22) provide a cartesian representation of
the VSWFs.

It can also be shown that the dyadic Green’s function is related to the outgoing,
dipole–level VSWF by

G(k0(r− r′)) =
i k0

2
√
3π

1∑
m=−1

N
(3)
m11(k0(r− r′))⊗P∗

m (24)

where subscript ∗ denotes conjugate, and by combining the above with Eq. (22), the
dyadic Green’s function becomes

G(k0(r− r′)) =
i k0
6π

1∑
m=−1

1∑
k=−1

Hk11m11(k0(r− r′))Pk ⊗P∗
m (25)

2.2. VSWF transformation of the VIE

The VIE can be transformed so that its vector dimensions (i.e., the cartesian com-
ponents) are replaced with the −1, 0, and 1 azimuthal degrees for the dipole. This
transformation of the transition dyad produces a so–called two–point transition matrix
T (2)(r, r′), in which

T
(2)
mk(r, r

′) =
i k0
6π

P∗
m · T (r, r′) ·Pk, m, k = −1, 0, 1 (26)

and since
Pm ·P∗

k = δm,k (27)

then

T (r, r′) = −6π i

k0

1∑
m=−1

1∑
k=−1

T
(2)
mk(r, r

′)Pm ⊗P∗
k (28)

and the internal and scattered fields, appearing in Eqs. (6) and (10), will now be given
by

Eint(r) =
1

α

1∑
m=−1

Pm

∫
Vint

1∑
k=−1

T
(2)
mk(r, r

′′)P∗
k ·Eexc(r

′′) dr′′ 3, r ∈ Vint (29)

Esca(r) =
1∑

m=−1

Pm

∫
Vint

1∑
m′=−1

Hm11m′11(k0(r− r′))

×

(∫
Vint

1∑
k=−1

T
(2)
m′ k(r

′, r′′)P∗
k ·Eexc(r

′′) dr′′ 3

)
dr′ 3, r ∈ Vext (30)
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in which

α =
i k30
6π

(m2 − 1) (31)

Using the definition in Eq. (28) along with the VIE of Eq. (8) results in a VIE for
T (2):

1

α
T

(2)
mk(r, r

′) = δ(r− r′) δm−k

+

∫
Vint

1∑
m′=−1

Hm11m′11(k0(r− r′′))T
(2)
m′k(r

′′, r′) dr′′ 3, r, r′ ∈ Vint (32)

It should be emphasized that Eq. (32) is fundamentally equivalent to Eq. (8); the
only distinction is that the former works in dipole degree space, whereas the latter works
in vector component space. The wave function representation, however, does make it
possible to define additional T matrix operators, that arise once Eq. (10) is formally
integrated over one or both of the volume domains. These operators will involve wave
function expansions beyond the dipole level, and as such they will have no equivalence
to operators in the vector component model.

Performing such integrations, however, requires that certain restrictions be made on
the nature of the exciting field and the location of the evaluation point r in Eq. (10).
Specifically, the exciting field is taken to arise from sources located in Vext,C , i.e., points
outside of the circumscribing radius centered about the particle origin r0. A sufficiently
general model representation of the exciting field, for this restriction, is to take it as that
radiated from a single dipole, of some specified orientation, located in Vext,C ; an arbitrary
exciting field – including a plane wave – could be constructed from a superposition of
dipole sources. Assume the exciting field originates from a point dipole source located at
position re ∈ Vext,C . The orientation of the dipole is specified by unit vector ud relative
to the particle coordinate system, and the field radiated by the source can be described
by

P∗
m ·Eexc(r) =

E0√
3π

1∑
k=−1

Hm11 k11(k0(r− re)) sk, r ∈ Vext,C (33)

where E0 is a characteristic electric field amplitude, the presence of which renders the sk
coefficients dimensionless, and

sk = P∗
k · ud (34)

Since the dipole source is located outside the circumscribing sphere, Eq. (19) can be
used to represent the exciting field at points internal to the particle as a regular VSWF
expansion, given by

P∗
m ·Eexc(r) =

E0√
3π

∑
µ

Jm11µ(k0(r− r0))

1∑
k=−1

Hµk11(k0(r0 − re)) sk

=
E0√
3π

∑
µ

Jm11µ(k0(r− r0)) f
0
µ, r ∈ Vint (35)
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In the above and what follows, Greek subscripts will be shorthand for the triplet of
degree/order/mode, i.e., µ = (mnp); this convention will greatly simplify the resulting
presentation.

The general form of Eq. (35) will hold for any dipole source located in Vext,C , in that
alternations of the exciting field would only affect the expansion coefficients f0ν . More
importantly, the form enables the formal integration over r′′ in Eqs. (29) and (30), the

process of which defines a one–point transition matrix T
(1)
mν(r′, r0), so that

P∗
m ·Eint(r) =

E0

α
√
3π

∑
ν

T (1)
mν(r, r0) f

0
ν , r ∈ Vint (36)

P∗
m ·Esca(r) =

E0√
3π

1∑
m′=−1

∑
ν

∫
Vint

Hm11m′11(k0(r− r′))T
(1)
m′ ν(r

′, r0) dr
′ 3 f0ν , r ∈ Vext (37)

where T (1) is defined as

T (1)
mν(r, r0) =

1∑
k=−1

∫
Vint

T
(2)
mk(r, r

′)Jk11 ν(k0(r
′ − r0)) dr

′ 3 (38)

A VIE for T (1) is obtained by multiplying Eq. (32) into the regular translation matrix
Jk11 ν(k0(r

′ − r0)) and integrating over r′, to yield

1

α
T (1)
mν(r, r0) = Jm11 ν(k0(r− r0))

+

∫
Vint

1∑
m′=−1

Hm11m′11(k0(r− r′))T
(1)
m′ ν(r

′ r0) dr
′ 3, r ∈ Vint (39)

The same restriction that was placed on the exciting field can now be applied to the
scattered field. Specifically, the observation point r of the scattered field is constrained
to be located solely in Vext,C . Under this restraint the outgoing translation matrix
H(k0(r− r′)) can be factored per Eq. (20). And as before, this allows for the integration
over interior points r′ to be separated from the location of the evaluation point r. The
end result is the T matrix relationship:

P∗
m ·Esca(r) =

E0√
3π

∑
µ

Hm11µ(k0(r− r0))
∑
ν

Tµ ν(r0) f
0
ν , r ∈ Vext,C (40)

in which

Tµ ν(r0) =

1∑
m=−1

∫
Vint

Jµm11(k0(r0 − r′))T (1)
mν(r

′, r0) dr
′ 3 (41)

=

1∑
m=−1

1∑
k=−1

∫
Vint

Jµm11(k0(r0 − r′))

×
∫
Vint

T
(2)
mk(r

′, r′′) Jk11 ν(k0(r
′′ − r0)) dr

′′ 3 dr′ 3 (42)
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The integral relations for the matrix operators T
(1)
mν(r, r0) and Tµ ν(r0), given in

Eqs. (39) and (41), are equivalent to those derived by Litvinov [5]. They are also anal-
ogous to the formulas used to construct the T matrix for a cluster of spheres, via the
superposition T matrix method [10]. And along the same lines as the superposition
method, Eq. (39) provides an energy conservation statement for the T matrix. This

is obtained by multiplying the equation through by T
(1∗)
mν (r, r0), summing over m and

integrating over r, and employing the properties of the translation matrices for real k0:

Jmν(k0(r− r0)) = J∗
ν m(k0(r0 − r)) (43)

Hm11 k11(k0(r− r′)) +H∗
k11m11(k0(r

′ − r)) = 2Jm11 k11(k0(r− r′))

= 2
∑
µ

J∗
µm11(k0(r0 − r)) Jµk11(k0(r0 − r′)) (44)

This results in

−Re

(
1

α

) 1∑
m=−1

∫
Vint

∣∣∣T (1)
mν(r, r0)

∣∣∣2 dr3 +∑
µ

|Tµ ν(r0)|2 = −ReTν ν(r0) (45)

When summed over ν and multiplied by π/k20, the two terms on the left correspond to
the random orientation absorption and scattering cross sections of the particle; note that
Re (1/α) will be zero for non absorbing material. These equate to the random orientation
extinction cross section, as given by the right term.

3. Calculation of the T matrix

Equation (39) provides the starting point to calculate the T matrix for a set particle
geometry and composition. The most direct implementation, in this regard, is to adopt
a discretized volume integral formulation, for which the integration over volume is re-
placed with a sum over discrete control volume elements, and the quantity α is replaced
by an effective polarizability of the element [12, 13]. The result is basically the DDA

for homogeneous particles, applied to T
(1)
mν(ri, r0) at discrete cell positions ri and for

a set degree/order/mode ν component. Upon solution for a given ν, the contribution
to Tµ ν(r0) would be obtained by the discretized volume integration in Eq. (41). The
practical implementation of this approach is discussed in [4].

On the other hand, a formal integration of the volume integral in Eq. (39) will lead to
a T matrix calculation scheme based on a surface integral. The surface integral is derived
from Green’s second identity and by recognizing that the translation matrix H and the
one–point matrix T (1) satisfy the scalar Helmholtz equation (SHE) with wavenumbers k0
and mk0 (the latter comes from the association of T (1)(r, r0) with the internal field via
Eq. (36)). Care must be exercised in applying Green’s identity to the volume integral,
due to the singular point at r′ = r [14]. The details are not entirely germane to the
presentation here; suffice to say that the volume integral in Eq. (39) reduces to two parts:
one part being a integral over the surface of the particle and the other representing the
singular point contribution. The latter part will identically cancel the left–hand side of
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Eq. (39), and the former part can therefore be equated to the first term on the right of
Eq. (39). This results in

Jm11 ν(k0(r− r0))

= − 1

k20(m
2 − 1)

1∑
k=−1

Q
[
Hm11 k11(k0(r− r′)), T

(1)
k ν (r

′, r0)
]
r′,B

, r ∈ Vint (46)

where B denotes the particle surface, and the surface integral operator Q is defined as

Q [F (r), G(r)]r,S =

∫
S

n̂ · (∇F (r)G(r)− F (r)∇G(r)) dr2 (47)

with n̂ and S denoting the outward surface normal and the closed surface of integration.
Equation (46) is equivalent to the vector Huygen’s condition for points inside the

particle, i.e., the null–field condition [1, 3]. This can be seen by multiplying through by
Pmfν and summing over m and ν, for which the left hand side becomes the exciting
field at interior point r and the right involves a distribution of tangential interior surface
fields.

The relation in Eq. (46) can be further reduced by multiplying by Hµm11(k0(r0 −
r)), where µ is again shorthand for a degree/order/mode triplet, and summing over m.
Because the functions Hµm11(k0(r0 − r)) and Jm11 ν(k0(r − r0)) both satisfy the SHE
with wavenumber k0, Green’s second identity can be again used to show that

1∑
m=−1

Q [Hµm11(k0(r0 − r)), Jm11 ν(k0(r− r0))]r,B

=

1∑
m=−1

Q [Hµm11(k0(r0 − r)), Jm11 ν(k0(r− r0))]r,SI(r0)
=

6πi

k0
δµ ν (48)

where SI(r0) is the surface of the inscribing sphere centered about r0 (i.e., the sphere
of maximum radius which entirely fits within the particle); the use of this spherical
surface allows for an analytic evaluation of the integral by application of the orthogonality
properties of the translation matrices and the Wronskian of the spherical Bessel and
Hankel functions. The same integration principle can be now be applied to the right
hand side of Eq. (46). And since all points r which lie on the inscribing sphere must
maintain the inequality

|r− r0| < |r′ − r0| , r ∈ SI(r0), r′ ∈ B, (49)

the translation matrix Hm11 k11(k0(r− r′)) can be factored according to Eq. (19). This
result allows for an uncoupling of the integration over the surface r ∈ SI(r0) from the
integration over the surface r′ ∈ B. The end result is

δµ ν = − 1

k20(m
2 − 1)

1∑
k=−1

Q
[
Hµk11(k0(r0 − r′)), T

(1)
k ν (r

′, r0)
]
r′,B

(50)

The final task in the problem is the representation of the one–point matrix by an
analytical basis. Since the regular VSWF form a complete basis for the representation of
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the surface fields [3], the matrix can be modeled by an expansion of the regular translation
elements, evaluated in the particle medium, via

T (1)
mν(r, r0) =

∑
ν′

Jm11 ν′(m k0(r− r0))Wν′ ν(r0) (51)

where W (r0) is an unknown coefficient matrix. A linear system for W (r0) is obtained
from Eq. (50), so that

−δµ ν =
∑
ν′

Q
(3,1)
µ ν′ (r0)Wν′ ν(r0) (52)

The T matrix is obtained from transformation of the volume integral in Eq. (41) into a
surface integral, following the same procedures used to obtain Eq. (50), yielding

Tµ ν(r0) =
∑
ν′

Q
(1,1)
µ ν′ (r0)Wν′ ν(r0) (53)

= −
∑
ν′

Q
(1,1)
µ ν′ (r0)

[
Q3,1(r0)

]−1

ν′ ν
(54)

where

Q(3,1)
µ ν =

1

k20(m
2 − 1)

1∑
k=−1

Q [Hµk11(k0(r0 − r′)), Jk11 ν(m k0(r
′ − r0))]r′,B (55)

Q(1,1)
µ ν =

1

k20(m
2 − 1)

1∑
k=−1

Q [Jµk11(k0(r0 − r′)), Jk11 ν(m k0(r
′ − r0))]r′,B (56)

4. Discussion

It occurred to the lead author, at the completion of the derivation leading to Eqs. (52)
and (53), that a more direct route might have been to simply substitute the cartesian–
based formulas for the VSWF, given in Eqs. (22) and (21), into Waterman’s surface
integral formulas for the Q and RgQ matrices. This is done now to demonstrate the
veracity of the derivation.

The conventional formula for the T matrix can be written, in usual matrix notation,
as [1, 3]

T = −RgQ ·Q−1 (57)

where (assuming nonmagnetic media)

Qµ ν =

∫
B

n̂ ·

(
(∇×N

(3)
µ (k0(r− r0)))×N(1)

ν (mk0(r− r0))

+N
(3)
µ (k0(r− r0))× (∇×N(1)

ν (mk0(r− r0)))

)
dr2 (58)

where the convention µ denotes the triplet (−mnp) for µ = (mnp), i.e., switched signs
on the azimuth degree. The formula for RgQ is the same, with the outgoing VSWF
replaced by the regular VSWF.
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Denote the vector part of the integrand in Eq. (58) that is dotted into the normal as
Kµν . In terms of the cartesian based VSWF formulas in Eqs. (21) and (22), this quantity
would appear as

Kµ ν =
1

3π

1∑
m′=−1

1∑
k′=−1

(
(∇×Pm′ fm′µ(r))×Pk′ gk′ν(r)

+Pm′ fm′µ(r)× (∇×Pk′ gk′ν(r))

)
(59)

where the scalar functions f and g are

fm′µ(r) = Hm′11µ(k0(r− r0)) (60)

gk′ν(r) = Jk′11 ν(mk0(r− r0)) (61)

By using the vector calculus identities;

∇× (a f(r)) = ∇ f(r)× a (62)

a× (b× c) = b(a · c)− c(a · b) (63)

and switching the m′ and k′ indices to group terms, the integrand can be written as

Kµ ν = − 1

3π

1∑
m′=−1

1∑
k′=−1

(
(∇ fm′µ(r) gk′ν(r)− fm′µ(r)∇ gk′ν(r)) (Pm′ ·Pk′)

−Pm′ [Pk′ · (∇ fm′µ(r) gk′ν(r)−∇ gm′ν(r) fk′µ(r))]

)
(64)

The P vectors have the property

Pm′ ·Pk′ = (−1)m
′
δm′,−k′ (65)

which, when applied to the first term in Eq. (64), gives a result that can be reduced, in
a few steps that make use of the symmetry properties of the translation matrices, to the
form of the integrand in Eq. (47).

One would therefore expect that the second term in Eq. (64) must be equivalent to
the first, or that it must be zero. The actual situation is somewhat more complicated:
the second term is not zero, and it cannot be reduced to the form of the integrand in
Eq. (52), yet its net contribution to the T matrix will be zero. To show how such is the
case, the term is expanded via

1∑
m′=−1

1∑
k′=−1

Pm′ [Pk′ · (∇ fm′µ(r) gk′ν(r)−∇ gm′ν(r) fk′µ(r))]

=

1∑
m′=−1

1∑
k′=−1

Pm′ [Pk′ · ∇ (fm′µ(r) gk′ν(r)− gm′ν(r) fk′µ(r))]

−
1∑

m′=−1

1∑
k′=−1

Pm′ [Pk′ · (∇ gk′ν(r) fm′µ(r) −∇ fk′µ(r) gm′ν(r))] (66)
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The VSWF have zero divergence, which implies that

1∑
k′=−1

∇ · (Pk′ fk′µ(r)) =

1∑
k′=−1

Pk′ · ∇ fk′µ(r) = 0 (67)

and likewise for the g function; this property eliminates the last term in Eq. (66). The
second term in Eq. (66) is not zero, yet its contribution to the surface integral can be
evaluated by use of the divergence theorem:

1∑
m′=−1

1∑
k′=−1

∫
B

n̂ · (Pm′ [Pk′ · ∇ (fm′µ(r) gk′ν(r)− gm′ν(r) fk′µ(r))]) dr
2

=
1∑

m′=−1

1∑
k′=−1

∫
Vint

∇ · (Pm′ [Pk′ · ∇ (fm′µ(r) gk′ν(r)− gm′ν(r) fk′µ(r))]) dr
3

=
1∑

m′=−1

1∑
k′=−1

∫
Vint

Pm′ · ∇ [Pk′ · ∇ (fm′µ(r) gk′ν(r)− gm′ν(r) fk′µ(r))] dr
3 (68)

The order of the P ·∇ operators, and the m′ and k′ indices, can be switched in the second
term on the last line, to show that the integrand in the volume integral is zero.

An additional check on the formulation can be obtained by applying Eqs. (52) and (53)
to a spherical particle. It has been verified by the author that the T matrix, calculated
from Eq. (54), is diagonal and azimuth degree degenerate, and with elements equal to
the Mie coefficients.

In closing, it has been demonstrated that the surface integral formulas for the T
matrix of a homogeneous, isotropic particle can be formulated entirely with the set of
scalar basis functions provided by the VSWF translation matrix elements. No claim
is made that the resulting formulas offer any numerical advantage over the traditional,
VSWF–based formulation. However, the new formulation could, conceivably, result in
some coding simplifications.
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Appendix

Explicit formulas for the translation matrix elements that appear in this work are

Jm11 kl1(k r) =

(
6π

(2l − 1)(2l + 1)(2l + 3)

)1/2

×

[(
(l + 1)(2l + 3)(l − k)!(l + k)!

l(1−m)!(m+ 1)!(l + k −m− 1)!(l − k +m− 1)!

)1/2

ψ
(1)
k−ml−1(k r)

+ (−1)m
(
l(2l − 1)(l + k −m+ 1)!(l − k +m+ 1)!

(l + 1)(1−m)!(m+ 1)!(l − k)!(l + k)!

)1/2

ψ
(1)
k−ml+1(k r)

]
(69)

Jm11 kl2(k r) = i (m(l + 1)− k)

×
(

6π (l − k)!(k + l)!

(l2 + l) (1−m)!(m+ 1)!(l + k −m)!(l − k +m)!

)1/2

ψ
(1)
k−ml(k r) (70)

The formulas for the outgoing matrix H are the same, with the regular scalar wave
harmonics replaced by the outgoing type.

The gradient of a scalar wave function is given by the formulas(
∂

∂x
+ i

∂

∂y

)
ψmn(k r) = k

(
1

2n+ 1

)1/2
[(

(n−m− 1)(n−m)

2n− 1

)1/2

ψm+1n−1(kr)

+

(
(n+m+ 1)(n+m+ 2)

2n+ 3

)1/2

ψm+1n+1(kr)

]
(71)

(
∂

∂x
− i

∂

∂y

)
ψmn(k r) = −k

(
1

2n+ 1

)1/2
[(

(n+m− 1)(n+m)

2n− 1

)1/2

ψm−1n−1(kr)

+

(
(n−m+ 1)(n−m+ 2)

2n+ 3

)1/2

ψm−1n+1(kr)

]
(72)

∂

∂z
ψmn(k r) = k

(
1

2n+ 1

)1/2
[(

(n−m)(n+m)

2n− 1

)1/2

ψmn−1(kr)

−
(
(n−m+ 1)(n+m+ 1)

2n+ 3

)1/2

ψmn+1(kr)

]
(73)
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