549 research outputs found

    Induction of Graft-Versus-Leukaemia Activity Following Bone Marrow Transplantation for Chronic Myeloid Leukaemia

    Get PDF
    This thesis describes the induction of in vitro graft-versus-leukaemia (GVL) activity following bone marrow transplantation (BMT) for chronic myeloid leukaemia (CML)

    How competent are Scottish surgical trainees in central venous catheter insertion?

    Get PDF

    Reduced Intensity Conditioning for Allogeneic Hematopoietic Cell Transplantation: Current Perspectives

    Get PDF
    AbstractAllogeneic HCT after myeloablative conditioning is an effective therapy for patients with hematologic malignancies. In an attempt to extend this therapy to older patients or those with comorbidities, reduced intensity or truly nonmyeloablative regimens have been developed over the past decade. The principle underlying reduced intensity regimens is to provide some tumor kill with lessened regimen-related morbidity and mortality and then rely on graft-versus-tumor (GVT) effects to eradicate remaining malignant cells, whereas nonmyeloablative regimens rely primarily on GVT effects. In this article, 3 representative approaches are described, demonstrating the clinical application for hematopoietic and nonhematopoietic malignancies. Current challenges include controlling GVHD while allowing GVT to occur. In the future, clinical trials using reduced intensity and nonmyeloablative conditioning will be compared with myeloablative conditioning in selected malignancies to extend the application to standard-risk patients

    On the conservation of helicity in a chiral medium

    Get PDF
    We consider the energy and helicity densities of circularly polarised light within a lossless chiral medium, characterised by the chirality parameter β. A form for the helicity density is introduced, valid to first order in β, that produces a helicity of ±\hbar per photon for right and left circular polarisation, respectively. This is in contrast to the result obtained if we use the form of the helicity density employed for linear media. We examine the helicity continuity equation, and show that this modified form of the helicity density is required for consistency with the dual symmetry condition of a chiral medium with a constant value of ε/μ. Extending the results to arbitrary order in β establishes an exact relationship between the energy and helicity densities in a chiral medium

    On the conservation of helicity in a chiral medium

    Get PDF
    We consider the energy and helicity densities of circularly polarised light within a lossless chiral medium, characterised by the chirality parameter β. A form for the helicity density is introduced, valid to first order in β, that produces a helicity of ±\hbar per photon for right and left circular polarisation, respectively. This is in contrast to the result obtained if we use the form of the helicity density employed for linear media. We examine the helicity continuity equation, and show that this modified form of the helicity density is required for consistency with the dual symmetry condition of a chiral medium with a constant value of ε/μ. Extending the results to arbitrary order in β establishes an exact relationship between the energy and helicity densities in a chiral medium

    Optical helicity and chirality: conservation and sources

    Get PDF
    We consider the helicity and chirality of the free electromagnetic field, and advocate the former as a means of characterising the interaction of chiral light with matter. This is in view of the intuitive quantum form of the helicity density operator, and of the dual symmetry transformation generated by its conservation. We go on to review the form of the helicity density and its associated continuity equation in free space, in the presence of local currents and charges, and upon interaction with bulk media, leading to characterisation of both microscopic and macroscopic sources of helicity

    Continuous Symmetries and Conservation Laws in Chiral Media

    Get PDF
    Locally conserved quantities of the electromagnetic field in lossless chiral media are derived from Noether's theorem, including helicity, chirality, momentum, and angular momentum, as well as the separate spin and orbital components of this last quantity. We discuss sources and sinks of each in the presence of current densities within the material, and in some cases, as also generated by inhomogeneity of the medium. A previously obtained result connecting sources of helicity and energy within chiral materials is explored, revealing that association between the two quantities is not restricted to chiral media alone. Rather, it is analogous to the connection between the momentum, and the spin and orbital components of the total angular momentum. The analysis reveals a new quantity, appearing as the "orbital" counterpart of the helicity density in classical electromagnetism
    corecore