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Abstract
We consider the energy and helicity densities of circularly polarised light within a lossless chiral
medium, characterised by the chirality parameter β. A form for the helicity density is introduced,
valid to first order in β, that produces a helicity of ±ÿ per photon for right and left circular
polarisation, respectively. This is in contrast to the result obtained if we use the form of the helicity
density employed for linear media. We examine the helicity continuity equation, and show that this
modified form of the helicity density is required for consistency with the dual symmetry condition
of a chiral medium with a constant value of ò/μ. Extending the results to arbitrary order in
β establishes an exact relationship between the energy and helicity densities in a chiral medium.

Keywords: helicity, chirality, optical angular momentum, dual symmetry, light–matter
interactions, bi-isotropic media

(Some figures may appear in colour only in the online journal)

1. Introduction

The helicity of an electromagnetic field continues to receive
interest as a way of describing the interaction of chiral light
with matter [1–5]. Interchanging the electric and magnetic
fields in the free-space Maxwell equations leaves them
invariant, as a consequence of their dual symmetry [6]. From
Noether’s theorem [7–9], the conserved quantity arising from
this symmetry is indeed the electromagnetic helicity of the
fields, which characterises their twist, or vorticity. In the
presence of matter, helicity is no longer generally conserved,
but one can still write down a continuity equation which
shows how currents and charges can act as sources or sinks of
helicity, analogous to the continuity equation for electro-
magnetic energy [4]. Thus, the (non)-conservation of the
helicity of a field can be used to characterise different types of
matter [10].

The study of electromagnetic helicity within media, as
opposed to in the free electromagnetic field, has been under-
taken in recent years [2, 3, 5]. The conditions under which
helicity is conserved in a lossless linear, isotropic medium were
considered by Fernandez-Corbaton et al [2], with the results
extended to include anisotropic media by van Kruining and
Götte in [3]. The definition of helicity in dispersive, lossless
media has been examined by Alpeggiani et al [5], while the
electromagnetic chirality, proportional to the helicity in the
case of monochromatic fields, has been examined in lossy
media by Vázquez-Lozano and Martínez [11].

In this paper, we discuss helicity in a dual-symmetric,
homogeneous, isotropic and lossless chiral medium. We use
the conservation of energy and helicity in such media to
determine an appropriate expression for the helicity density.
We first examine both the energy denisty and helicity density
to first order in the chirality parameter, β, which itself
describes the chiroptical response of the medium. From this
result, it follows that retaining terms of ( )b in the energy
density is necessary for conservation of the helicity density to
the same order. Such a chiral contribution to the helicity
density is required both to satisfy the dual symmetry
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condition, and to produce a helicity of ±ÿ per photon for
right- and left-handed circular polarised light within the
medium. We extend the results to examine both the energy
and helicity density to arbitrary orders in β and propose an
exact relationship between the two, showing that this rela-
tionship is a direct consequence of their conservation to all
orders in the chirality parameter. The results in this paper
have been stated in summary in our recent review on helicity
and chirality [10]. The present work provides a more com-
plete analysis and derivation of our results.

2. Helicity density in a chiral medium

2.1. Dual symmetry and helicity conservation

Electric-magnetic ‘democracy’ [12] in the absence of charge is
perhaps most striking when we express both electric and magn-
etic fields in terms of the vector potentials A and C [13–15]:

( ) = ´ = - ´B A D C, . 1

If we chose a gauge such that · =A 0, and also · =C 0,
then using Maxwell’s equations allows us to relate the fields to
the time derivatives of the potentials:

˙ ˙ ( )= - = -E A H C, . 2

In the presence of matter, the symmetry between electric
and magnetic fields no longer holds, as matter is comprised
only of electric charges with no magnetic ones. We should
note, however, that fields very much like those of a magnetic
monopole can emerge as a result of many-body interactions in
spin ice [16]. In some circumstances, the idea of electric-
magnetic democracy can be generalised to hold even in media,
provided the effects of the charges comprising the medium are
treated using macroscopic electrodynamics. To demonstrate
this, substituting the Drude–Born–Fedorov (DBF) constitutive
relations for a chiral medium [17]

( )
( ) ( )

b
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into Maxwell’s equations, and performing the duality trans-
formation [6]
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leaves the equations invariant if ( )m = 0. In other words,
the condition for duality symmetry within a linear medium is
that the ratio ò/μ remains constant [2, 3]. Conservation of
helicity is associated with dual symmetry [1, 2], so this is also
the condition under which helicity is conserved. These con-
siderations leave the chirality parameter β unspecified, and it

can vary freely in space without interfering with the dual
symmetry of the system [3].

Returning to free space, we can use the free-field Max-
well equations to write down a continuity equation for the
helicity [1, 4]

· ( )¶ + =h v 0, 5t

where
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is the helicity density of a free electromagnetic field, with the
associated flux density v given by

⎛
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We recognise this as the dual-symmetric form of the spin
density multiplied by the speed of light [18]. The continuity
equation for helicity can be compared with the continuity
equation for energy ·¶ + =w S 0t [19], where =w

( ∣ ∣ ∣ ∣ )m+ E H1 2 0
2

0
2 and S=E×H are the familiar energy

density and flux density of the free electromagnetic field.
If we consider right- and left-handed circularly polarised

plane waves in vacuum with complex field components
[ ( )](ˆ ˆ)= -  E i kz wt iE x yexp0 0 and =

m
  EH exp0 0

0

0

[ ( )](ˆ ˆ)-i kz wt iy x , it is straightforward to show that the
ratio of helicity density to energy density is
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for the right and left handed polarisations. This is in accor-
dance with the fact that the waves possess a helicity of ±ÿ per
photon [1]. Similarly, the ratio of flux densities along the
direction of propagation gives

⎡
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* *
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We note that because the ratios of energy and helicity density
are constant, and both the energy and helicity are locally
conserved in vacuum, the helicity—like the energy—must
travel at the speed of light.

Definitions (6) and (7) can be extended to linear media
with the replacements  0 and m m0 [3]. However, a
simple example shows that the result (8) does not follow from
this extensions of (6) and (7) if the medium is chiral. This is
because in a chiral medium, the energy density is not simply
equal to ( ∣ ∣ ∣ ∣ )m= +w E H1 2 2 2 , but is instead given by
[20, 21]

[ · · ( · ˙ ˙ · )] ( )b m= + - -w D E B H E H E H
1

2
, 101

where the subscript ‘1’ is used to indicate that this expression
holds to ( )b . Furthermore, it will be shown that the
straightforward extension of definition (6) by replacement of
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 0 and m m0 for chiral media is inconsistent with the
requirement that helicity is conserved when ( )m = 0.

We can motivate an expression for the helicity density in
a chiral medium which preserves the results (8) and (9) by
considering a specific case in which we know that the helicity
and energy densities must have the same relationship to one
another as they do in vacuum. This is the case when

( )m = 0 throughout the space under consideration,
including at interfaces, as helicity and energy are then both
locally conserved [2, 3]. We can then use our knowledge of
the energy density to suggest an appropriate helicity density.

With this in mind, we consider the propagation of light
from vacuum into a lossless, homogeneous and isotropic
chiral medium, characterised by the constitutive relations (3).
We also imagine that the chiral medium possesses permit-
tivity and permeability such that ò/μ=ò0/μ0, which means
helicity is conserved at the interface. This set-up is depicted in
figure 1. As there are neither sources nor sinks of helicity or
energy, we expect the flux densities of these two quantities to
remain unchanged from their vacuum values, and therefore
that their ratio also remains unchanged from (9). We further
expect that both the energy and helicity density travel at the
group velocity of the wave inside the medium, from which it
follows that the ratio of the helicity density to energy density
(8) must be conserved across the dual-symmetric interface.
We use this to postulate a helicity density, h1, with this
property.

2.2. The ratio of energy and helicity in a chiral medium

First, we consider the helicity and energy fluxes. The
electric and magnetic fields of right- and left-handed circu-
larly polarised plane waves in the chiral medium can be

written as [22]

[ ( )]( ˆ ˆ ) ( )w= -  E i kz t iE x yexp , 110

[ ( )](ˆ ˆ) ( )
m

w= - 
E i kz t iH y xexp . 120

Using the definition of the energy flux density = ´S E H
[20], we calculate

( ( ) ) ∣ ∣ ˆ ( )R
m

= ´ =   
ES E H z2 . 130

2*

As mentioned above, we extend the definition of the helicity
flux in vacuum (7) to that in an isotropic medium by the
replacement  0 and m m0 [3], to find
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* *

The ratio of the energy flux density to helicity flux density is
therefore given by

· ˆ
· ˆ

( )
w

= 




v z
S z

1
, 15

in agreement with vacuum value (9).
Second, we consider the helicity and energy densities.

For almost all materials the chirality parameter, β, is small,
and it is sufficient to work to first order in β. We do so for
simplicity here, and consider higher powers of β in the next
section. From the energy density in a chiral medium(10), we
calculate the energy density for right- and left-handed circu-
larly polarised waves

⎛
⎝⎜

⎞
⎠⎟∣ ∣ ( ) ( )b mb

m
w=    


w E k2 1 . 161 0

2

To obtain the ‘naïve’ extension of the helicity density, we
simply replace the values of permeability and permittivity in
(6) with those in the chiral medium to calculate
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2

* *

Comparing the energy and helicity densities (16) and (17), it
is clear that if we wish for the ratio of helicity density to
energy density to be maintained inside the chiral medium, the
helicity density is missing a term proportional to the chirality
parameter β. We can recover the ratio h±/w±=±1/ω by
adding

⎡
⎣⎢

⎤
⎦⎥( ∣ ∣ ∣ ∣ ) ∣ ∣ ( )R mb m mb

m
+ =  


EE H

1

2
2 182 2

0
2

Figure 1.Consider light traversing the interface between vacuum and
a dual-symmetric, lossless chiral medium characterised by ò, μ and
the chirality parameter β. As both the energy and helicity of the field
are conserved, the ratio of the helicity density to energy density,
h/w, is preserved across the interface. The energy density in a chiral
medium, w1 (10), contains a term proportional to β, such that the
expression for the helicity density must be modified to h1 (19) in
order that the ratio h/w=h1/w1 is maintained.
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to (17), which motivates the following definition of helicity
density in a chiral medium to ( )b :

⎛
⎝⎜

⎞
⎠⎟· · ( ∣ ∣ ∣ ∣ )

( )

m
m

mb m

mb

= - + +

º +




 



h

h w

A B C D E H
1

2

,

19

1
2 2

where h is the usual form helicity density in linear media (6),
with appropriate replacement of the vacuum permeability and
permittivity values. This modified form of the helicity density
is the central result of this paper.

3. The helicity continuity equation in a dual-
symmetric chiral medium

We now need to establish that the definition of helicity den-
sity (19), motivated by consideration of circularly polarised
plane waves, is appropriate for general fields inside a chiral
medium. If we continue to consider a dual-symmetric med-
ium, then helicity should be locally conserved, and we should
be able to express this in a local continuity equation analo-
gous to the vacuum continuity equation (5). We can form
such an equation from our helicity density (19). Taking the
time derivative and rearranging the expression results in

⎛
⎝⎜

⎞
⎠⎟· ( ) · ( )

· · ( · ˙ · ˙ )
( )

m
m

m
m

mb m

 ¶ + ´ + ´

= - + + +








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h E A H C

E B H D E E H H

1

2

.

20

t 1

We use the DBF relations in the time domain, =D
( ˙ )b- E B , ( ˙ )m b= +B H D [20], and retain only terms up

to ( )b , to write the right-hand side of (20) as

· ˙ · ˙

( · ˙ · ˙ ) ( )
m
mb

m
b

mb m

- -

+ + =






 

E D H B

E E H H 0. 21

If ( )m = 0 throughout the material, the left-hand side of
(20) then becomes

· ( )¶ + =h v 0, 22t 1

showing that the form of the helicity density in (19) is
required for the local conservation of helicity within a dual-
symmetric chiral medium.

It is worth mentioning that chiral media are also examined
in [3], where it is shown that the conservation of helicity of the
form h (6) for a chiral medium can be similarly expressed by a
continuity equation. However, this result is derived to first order
in the chirality parameter for the specific case of monochromatic
fields with time dependence ( )w-i texp where the DBF relations
reduce to D=ò(E+iμβH) and ( )m b= - iB H E . In this
case, the real part of the time derivative of the chiral contribution
to the helicity density, ( · ˙ · ˙ )mb m+ E E H H , is zero, so
that helicity conservation indeed holds. For fields of a more
general form, however, we stress that the helicity density of the

form (19) should be used for local conservation within chiral
media.

4. Higher powers of the chirality parameter

Throughout this article so far, we have worked to first order in
the chirality parameter β. We now consider ( )b 2 terms in
the helicity density, by retaining terms ( )b in the energy
density, to write

⎛
⎝⎜

⎞
⎠⎟· · ( )

m
m

mb= - +



h wA B C D

1

2
, 232 1

where w1 is the energy density to ( )b , as given in
equation (10). Repeating the above treatment, it is possible to
show ·¶ + =h v 0t 2 . The subscript on h2 indicates that
only terms ( )b 2 are retained to produce the continuity
equation ·¶ + =h v 0t 2 , in the same way that only terms

( )b are retained on the right-hand side of (20) to produce
(21). That is, the truncation to ( )b 2 is performed only after
the time derivative is taken. If we were working to ( )b 3 , we
would retain terms of ( )b 3 in the time derivative of

mb+ h w2, and so on. Indeed, it is straightforward to show
using (3) that the expression for the energy density [23, 24]

⎛
⎝⎜

⎞
⎠⎟· · ( )

m
= +b


w D D B B

1

2

1 1
24

satisfies the condition for local energy conservation exactly.
Making the replacement  0 and m m0 in (6) and (14)
and again using the DBF constitutive relations leads to

· · ( ) ( )mb ¶ + = ´h v E H . 25t

Recognising the divergence term on the right-hand side of
(25) as Poynting’s vector, the conservation of helicity can
then be expressed succinctly as

( ) · · ( · )

( )

mb mb mb  ¶ + + = -

=

b  h w v S S

0.

26

t

Thus,

⎛
⎝⎜

⎞
⎠⎟· · ( )

m
m

mb= - +b b



h wA B C D

1

2
27

is an exact expression for the electromagnetic helicity in a
chiral medium. It is worthwhile mentioning that expanding
the energy density (24) using the DBF constitutive relations in
the time domain leads to an infinite series of terms of
increasing order in β. The helicity density to ( )b + n 1 then
takes the form

⎛
⎝⎜

⎞
⎠⎟· · ( )

m
m

mb= - ++



h wA B C D

1

2
, 28n n1

where the subscript of wn indicates that only terms up to
( )b n are retained in the expansion of the energy density in

the time domain.
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As the energy and helicity fluxes do not change with
increasing orders in β, it follows that the speed at which the
densities propagate within the medium is dependent upon β.
This is confirmed by calculation of the group velocity of the
right- and left-handed circularly polarised waves within the
chiral medium. From Maxwell’s equations and the con-
stitutive relations (3), we can obtain the wave equation within
a chiral medium:

( )m mb mb  = + ´ -  H H H H¨ 2 ¨ ¨ . 292 2 2

Inserting H± from (11) leads to the dispersion relation
( )w m b=  k k1 , so that the group velocity is given by

( )
( )w

m b
= =







v

d

dk k

1

1
. 30g 2

The expression for hβ in (27) for right- and left-handed
circular polarised plane waves leads to a speed of propagation
of the helicity density of the wave in agreement with (30).
Considering again E± and H± in (11), we calculate

∣ ∣ ( ) ( ) ( )
w

b b m b=   + b
  h E k k

1
2 1 2 1 . 310

2 2

Using the dispersion relation, this can be rewritten

∣ ∣ ( ) ( )
w

b=  b
 h E k

1
2 1 , 320

2 2

so that inserting the flux density of the fields from (14)
leads to:

· ˆ
( )

( )
m b

=
b



 h k

v z 1

1
. 33

2

An analogous result holds for the propagation speed of the
energy density, · ˆ =b

  w vS z g , from which it follows that
the ratio

( )
w

= b

b





h

w

1
34

holds for the circularly polarised plane waves inside the chiral
medium.

5. Conclusion

The dual symmetry of the free-space Maxwell equations
generated by the conservation of helicity invariably underpins
much of classical electromagnetism. That this symmetry also
exists within some media is a surprising result which provides
us with an elegant way by which to probe the chiral response
of matter [2, 3, 5], and ultimately to relate this to the response
of individual microscopic sources of helicity [4, 10, 25, 26].

In this paper, we have used the dual symmetry of the
macroscopic Maxwell equations under certain conditions to
review the resulting conservation of helicity. Using the DBF
constitutive relations (3), we discussed that the condition for
dual symmetry imposes no restriction upon a chirality para-
meter Rb Î of a chiral medium, and so it follows that
helicity is conserved within such media where there is no

gradient in ò/μ. We examined a simple case where we know
that helicity must be conserved: the propagation of right- and
left-handed circular polarised plane waves traversing a
vacuum-chiral interface where ò/μ=ò0/μ0, and used this to
motivate an expression for the helicity density of electro-
magnetic fields within a chiral medium. We extended the
result to include higher orders in the chirality parameter, and
tested the resulting expression by various means: it allows us
to express the conservation of helicity in a local continuity
equation, it produces the correct group velocity for the right-
and left-handed circularly polarised plane waves, and it leads
to the correct ratio of helicity density to energy density for
these waves inside the medium. The local conservation of
helicity in a chiral medium then follows as a consequence of
the conservation of energy, as follows from (26).
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