249 research outputs found

    Recurrent explosive behaviour of debt-to-GDP ratio

    Get PDF
    In this paper the recurrent explosive behaviour of debt-to-GDP ratio is tested in three countries with a long fiscal record: Sweden, the UK and the US. The testing is based on the method developed by Phillips et al. (2015) which is new in this context. The method allows us to avoid the size distortion problem of the traditional tests of fiscal sustainability and makes it possible to examine potential unsustainability as a transitory rather than permanent phenomenon. It has been demonstrated that in the economies analyzed, long periods of fiscal sustainability were interrupted by relatively short periods when the debt-to-GDP ratio had explosive dynamics

    Tuning SMSI Kinetics on Pt-loaded TiO2_2(110) by Choosing the Pressure: A Combined UHV / Near-Ambient Pressure XPS Study

    Full text link
    Pt catalyst particles on reducible oxide supports often change their activity significantly at elevated temperatures due to the strong metal-support interaction (SMSI), which induces the formation of an encapsulation layer around the noble metal particles. However, the impact of oxidizing and reducing treatments at elevated pressures on this encapsulation layer remains controversial, partly due to the 'pressure gap' between surface science studies and applied catalysis. In the present work, we employ synchrotron-based near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) to study the effect of O2_2 and H2_2 on the SMSI-state of well-defined Pt/TiO2_2(110) catalysts at pressures of up to 0.1 Torr. By tuning the O2_2 pressure, we can either selectively oxidize the TiO2_2 support or both the support and the Pt particles. Catalyzed by metallic Pt, the encapsulating oxide overlayer grows rapidly in 1x10āˆ’5^{-5} Torr O2_2, but orders of magnitudes less effective at higher O2_2 pressures, where Pt is in an oxidic state. While the oxidation/reduction of Pt particles is reversible, they remain embedded in the support once encapsulation has occurred

    Effector cell mediated cytotoxicity measured by intracellular Granzyme B release in HIV infected subjects

    Get PDF
    CD8+ cytotoxic T lymphocyte (CTL) activity is currently believed to be one of the key immunologic mechanisms responsible for the prevention or attenuation of HIV-1 infection. The induction of CD8+ T cell activation may also result in the production of soluble or non-classical lytic factors that are associated with protection from infection or slower disease progression. Traditionally, CD8+ CTL responses have been measured by the classic chromium release assay, monitoring the ability of T cells (Effector cells) to lyse radiolabelled HLA ā€“ matched ā€œtarget cellsā€ that express the appropriate antigen-MHC complex. This method is not only labor intensive, semi quantitative assay at best, but also needs fresh, non-cryopreserved cells. Recently, cytokine specific ELISPOT assays or tetrameric MHC-I/ peptide complexes have utilized to directly quantitate circulating CD8+ effector cells, and these assays are more sensitive, quantitative and reproducible than the traditional CTL lysis assay and can also be performed on cryopreserved cells. Although these are reproducible assays for the assessment of soluble antiviral activity secreted by activated T cell populations they can be extremely expensive to perform. We have used FACS Analysis to measure Granzyme B release as a function of cell mediated cytotoxicity. This method helps quantitate the CTL activity and also identifies the phenotype of the cells elucidating this immune response. The method described not only monitors immunological response but also is also simple to perform, precise and extremely time efficient and is ideal for screening a large number of samples

    Dramatic Rise in Plasma Viremia after CD8+ T Cell Depletion in Simian Immunodeficiency Virusā€“infected Macaques

    Get PDF
    To determine the role of CD8+ T cells in controlling simian immunodeficiency virus (SIV) replication in vivo, we examined the effect of depleting this cell population using an anti-CD8 monoclonal antibody, OKT8F. There was on average a 99.9% reduction of CD8 cells in peripheral blood in six infected Macaca mulatta treated with OKT8F. The apparent CD8 depletion started 1 h after antibody administration, and low CD8 levels were maintained until day 8. An increase in plasma viremia of one to three orders of magnitude was observed in five of the six macaques. The injection of a control antibody to an infected macaque did not induce a sustained viral load increase, nor did it significantly reduce the number of CD8+ T cells. These results demonstrate that CD8 cells play a crucial role in suppressing SIV replication in vivo

    Why Don't CD8+ T Cells Reduce the Lifespan of SIV-Infected Cells In Vivo?

    Get PDF
    In January 2010 two groups independently published the observation that the depletion of CD8+ cells in SIV-infected macaques had no detectable impact on the lifespan of productively infected cells. This unexpected observation led the authors to suggest that CD8+ T cells control SIV viraemia via non-lytic mechanisms. However, a number of alternative plausible explanations, compatible with a lytic model of CD8+ T cell control, were proposed. This left the field with no consensus on how to interpret these experiments and no clear indication whether CD8+ T cells operated primarily via a lytic or a non-lytic mechanism. The aim of this work was to investigate why CD8+ T cells do not appear to reduce the lifespan of SIV-infected cells in vivo

    HIV-Neutralizing Activity of Cationic Polypeptides in Cervicovaginal Secretions of Women in HIV-Serodiscordant Relationships

    Get PDF
    HIV exposed seronegative (HESN) women represent the population most in need of a prophylactic antiviral strategy. Mucosal cationic polypeptides can potentially be regulated for this purpose and we here aimed to determine their endogenous expression and HIV neutralizing activity in genital secretions of women at risk of HIV infection.Cervicovaginal secretions (CVS) of Kenyan women in HIV-serodiscordant relationships (HESN, nā€Š=ā€Š164; HIV seropositive, nā€Š=ā€Š60) and low-risk controls (nā€Š=ā€Š72) were assessed for the cationic polypeptides HNP1ā€“3, LL-37 and SLPI by ELISA and for HIV neutralizing activity by a PBMC-based assay using an HIV primary isolate. Median levels of HNP1ā€“3 and LL-37 in CVS were similar across study groups. Neither HSV-2 serostatus, nor presence of bacterial vaginosis, correlated with levels of HNP1ā€“3 or LL-37 in the HESN women. However, an association with their partner's viral load was observed. High viral load (>10,000 HIV RNA copies/ml plasma) correlated with higher levels of HNP1ā€“3 and LL-37 (pā€Š=ā€Š0.04 and 0.03, respectively). SLPI was most abundant in the low-risk group and did not correlate with male partner's viral load in the HESN women. HIV neutralizing activity was found in CVS of all study groups. In experimental studies, selective depletion of cationic polypeptides from CVS rendered the remaining CVS fraction non-neutralizing, whereas the cationic polypeptide fraction retained the activity. Furthermore, recombinant HNP1ā€“3 and LL-37 could induce neutralizing activity when added to CVS lacking intrinsic activity.These findings show that CVS from HESN, low-risk, and HIV seropositive women contain HIV neutralizing activity. Although several innate immune proteins, including HNP1ā€“3 and LL-37, contribute to this activity these molecules can also have inflammatory properties. This balance is influenced by hormonal and environmental factors and in the present HIV serodiscordant couple cohort study we show that a partner's viral load is associated with levels of such molecules

    A Decline in CCL3-5 Chemokine Gene Expression during Primary Simian-Human Immunodeficiency Virus Infection

    Get PDF
    BACKGROUND: The CC-chemokines CCL3, CCL4 and CCL5 have been found to block the entry of CCR5-tropic HIV into host cells and to suppress the viral replication in vitro, but the in vivo role of endogenous CC-chemokines in HIV-1 infection is still incompletely understood. METHODOLOGY/PRINCIPLE FINDINGS: In this study, the primate host CCL3, CCL4 and CCL5 gene expression was evaluated in response to simian-human immunodeficiency virus (SHIV) infection in rhesus macaque model. Five rhesus macaques were inoculated with CCR5-tropic SHIV(SF162P4). The mRNA levels of CCL3, CCL4 and CCL5 were measured by real-time PCR at post inoculation day (PID) 0, 7, 14, 21, 35, 56 and 180 in peripheral blood. In addition, a selected subset of samples from CXCR4-tropic SHIV(Ku1)-infected macaques was included with objective to compare the differences in CC-chemokine down-regulation caused by the two SHIVs. Gut-associated lymphoid tissues (GALT) collected from SHIV(SF162P4)-infected animals were also tested by flow cytometry and confocal microscopy to corroborate the gene expression results. Predictably, higher viral loads and CD4+ T cell losses were observed at PID 14 in macaques infected with SHIV(Ku1) than with SHIV(SF162P4). A decline in CC-chemokine gene expression was also found during primary (PID 7-21), but not chronic (PID 180) stage of infection. CONCLUSIONS: It was determined that A) SHIV(SF162P4) down-regulated the CC-chemokine gene expression during acute stage of infection to a greater extent (p<0.05) than SHIV(Ku1), and B) such down-regulation was not paralleled with the CD4+ T cell depletion. Evaluation of CC-chemokine enhancing immunomodulators such as synthetic CpG-oligonucleotides could be explored in future HIV vaccine studies

    Identification of HIV-1 Epitopes that Induce the Synthesis of a R5 HIV-1 Suppression Factor by Human CD4+ T Cells Isolated from HIV-1 Immunized Hu-PBL SCID Mice

    Get PDF
    We have previously reported that immunization of the severe combined immunodeficiency (SCID) mice reconstituted with human peripheral blood mononuclear cells (PBMC) (hu-PBL-SCID mice) with inactivated human immunodeficiency virus type-1 (HIV-1)-pulsed-autologous dendritic cells (HIV-DC) elicits HIV-1-reactive CD4+ T cells that produce an as yet to be defined novel soluble factor in vitro with anti-viral properties against CCR5 tropic (R5) HIV-1 infection. These findings led us to perform studies designed to identify the lineage of the cell that synthesizes such a factor in vitro and define the epitopes of HIV-1 protein that have specificity for the induction of such anti-viral factor. Results of our studies show that this property is a function of CD4+ but not CD8+ T cells. Human CD4+ T cells were thus recovered from the HIV-DC-immunized hu-PBL-SCID mice and were re-stimulated in vitro by co-culture for 2 days with autologous adherent PBMC as antigen presenting cells, APC previously pulsed with inactivated HIV in IL-2-containing medium to expand HIV-1-reactive CD4+ T cells. Aliquots of these re-stimulated CD4+ T cells were then co-cultured with similar APC's that were previously pulsed with 10 Ī¼g/ml of a panel of HIV peptides for an additional 2 days, and their culture supernatants were examined for the production of both the R5 HIV-1 suppression factor and IFN-Ī„. The data presented herein show that the HIV-1 primed CD4+ T cells produced the R5 suppression factor in response to a wide variety of HIV-1 gag, env, pol, nef or vif peptides, depending on the donor of the CD4+ T cells. Simultaneous production of human interferon (IFN)-Ī„ was observed in some cases. These results indicate that human CD4+ T cells in PBMC of HIV-1 naive donors have a wide variety of HIV-1 epitope-specific CD4+ T cell precursors that are capable of producing the R5 HIV-1 suppression factor upon DC-based vaccination with whole inactivated HIV-1
    • ā€¦
    corecore