11,159 research outputs found

    Error correcting code using tree-like multilayer perceptron

    Full text link
    An error correcting code using a tree-like multilayer perceptron is proposed. An original message \mbi{s}^0 is encoded into a codeword \boldmath{y}_0 using a tree-like committee machine (committee tree) or a tree-like parity machine (parity tree). Based on these architectures, several schemes featuring monotonic or non-monotonic units are introduced. The codeword \mbi{y}_0 is then transmitted via a Binary Asymmetric Channel (BAC) where it is corrupted by noise. The analytical performance of these schemes is investigated using the replica method of statistical mechanics. Under some specific conditions, some of the proposed schemes are shown to saturate the Shannon bound at the infinite codeword length limit. The influence of the monotonicity of the units on the performance is also discussed.Comment: 23 pages, 3 figures, Content has been extended and revise

    Towards gravitationally assisted negative refraction of light by vacuum

    Full text link
    Propagation of electromagnetic plane waves in some directions in gravitationally affected vacuum over limited ranges of spacetime can be such that the phase velocity vector casts a negative projection on the time-averaged Poynting vector. This conclusion suggests, inter alia, gravitationally assisted negative refraction by vacuum.Comment: 6 page

    Counterposition and negative phase velocity in uniformly moving dissipative materials

    Full text link
    The Lorentz transformations of electric and magnetic fields were implemented to study (i) the refraction of linearly polarized plane waves into a half-space occupied by a uniformly moving material, and (ii) the traversal of linearly polarized Gaussian beams through a uniformly moving slab. Motion was taken to occur tangentially to the interface(s) and in the plane of incidence. The moving materials were assumed to be isotropic, homogeneous, dissipative dielectric materials from the perspective of a co-moving observer. Two different moving materials were considered: from the perspective of a co-moving observer, material A supports planewave propagation with only positive phase velocity, whereas material B supports planewave propagation with both positive and negative phase velocity, depending on the polarization state. For both materials A and B, the sense of the phase velocity and whether or not counterposition occurred, as perceived by a nonco-moving observer, could be altered by varying the observer's velocity. Furthermore, the lateral position of a beam upon propagating through a uniformly moving slab made of material A, as perceived by a nonco-moving observer, could be controlled by varying the observer's velocity. In particular, at certain velocities, the transmitted beam emerged from the slab laterally displaced in the direction opposite to the direction of incident beam. The transmittances of a uniformly moving slab made of material B were very small and the energy density of the transmitted beam was largely concentrated in the direction normal to the slab, regardless of the observer's velocity

    Modelling the sun's small scale global photospheric magnetic field

    Get PDF
    We present a new model for the Sun's global photospheric magnetic field during a deep minimum of activity, in which no active regions emerge. The emergence and subsequent evolution of small- scale magnetic features across the full solar surface is simulated, subject to the influence of a global supergranular flow pattern. Visually, the resulting simulated magnetograms reproduce the typical structure and scale observed in quiet Sun magnetograms. Quantitatively, the simulation quickly reaches a steady state, resulting in a mean field and flux distribution that are in good agreement with those determined from observations. A potential coronal magnetic field is extrapolated from the simulated full Sun magnetograms, to consider the implications of such a quiet photospheric magnetic field on the corona and inner heliosphere. The bulk of the coronal magnetic field closes very low down, in short connections between small-scale features in the simulated magnetic network. Just 0.1% of the photospheric magnetic flux is found to be open at 2:5 Rʘ, around 10 - 100 times less than that determined for typical HMI synoptic map observations. If such conditions were to exist on the Sun, this would lead to a significantly weaker interplanetary magnetic field than is presently observed, and hence a much higher cosmic ray flux at Earth

    Developing Interventions for Children's Exercise (DICE): a pilot evaluation of school-based exercise interventions for primary school children aged 7 to 8 years.

    Get PDF
    BACKGROUND: Developing Interventions for Children's Exercise (DICE) is an initiative aimed at determining effective school-based exercise programs. To assess feasibility, we conducted a pilot study of exercise sessions which varied in duration and frequency. METHODS: Exercise interventions were delivered to Year 3 pupils (age 7-8 years; n = 73) in primary schools within Yorkshire, UK. Evaluations were conducted using focus group sessions, questionnaires and observations. RESULTS: The study revealed positive aspects of all interventions, including favorable effects on children's concentration during lessons and identified the value of incorporation of the DICE concept into curriculum lessons. Children appeared enthused and reported well-being and enjoyment. Areas requiring attention were the need for appropriate timetabling of sessions and ensuring the availability of space. CONCLUSION: The concept and sessions were well-accepted by teachers who confirmed their full support of any future implementation There appears to be potential for the encouragement and empowerment of teachers to support physical activity and healthy school environments, and to take an interest in the health of their pupils. Ultimately, these findings should assist in the design of successful exercise interventions in the school setting

    Depolarization volume and correlation length in the homogenization of anisotropic dielectric composites

    Full text link
    In conventional approaches to the homogenization of random particulate composites, both the distribution and size of the component phase particles are often inadequately taken into account. Commonly, the spatial distributions are characterized by volume fraction alone, while the electromagnetic response of each component particle is represented as a vanishingly small depolarization volume. The strong-permittivity-fluctuation theory (SPFT) provides an alternative approach to homogenization wherein a comprehensive description of distributional statistics of the component phases is accommodated. The bilocally-approximated SPFT is presented here for the anisotropic homogenized composite which arises from component phases comprising ellipsoidal particles. The distribution of the component phases is characterized by a two-point correlation function and its associated correlation length. Each component phase particle is represented as an ellipsoidal depolarization region of nonzero volume. The effects of depolarization volume and correlation length are investigated through considering representative numerical examples. It is demonstrated that both the spatial extent of the component phase particles and their spatial distributions are important factors in estimating coherent scattering losses of the macroscopic field.Comment: Typographical error in eqn. 16 in WRM version is corrected in arxiv versio

    A note on the minimum distance of quantum LDPC codes

    Full text link
    We provide a new lower bound on the minimum distance of a family of quantum LDPC codes based on Cayley graphs proposed by MacKay, Mitchison and Shokrollahi. Our bound is exponential, improving on the quadratic bound of Couvreur, Delfosse and Z\'emor. This result is obtained by examining a family of subsets of the hypercube which locally satisfy some parity conditions

    Electronic structure of periodic curved surfaces -- topological band structure

    Full text link
    Electronic band structure for electrons bound on periodic minimal surfaces is differential-geometrically formulated and numerically calculated. We focus on minimal surfaces because they are not only mathematically elegant (with the surface characterized completely in terms of "navels") but represent the topology of real systems such as zeolites and negative-curvature fullerene. The band structure turns out to be primarily determined by the topology of the surface, i.e., how the wavefunction interferes on a multiply-connected surface, so that the bands are little affected by the way in which we confine the electrons on the surface (thin-slab limit or zero thickness from the outset). Another curiosity is that different minimal surfaces connected by the Bonnet transformation (such as Schwarz's P- and D-surfaces) possess one-to-one correspondence in their band energies at Brillouin zone boundaries.Comment: 6 pages, 8 figures, eps files will be sent on request to [email protected]

    Kramers-Kronig, Bode, and the meaning of zero

    Full text link
    The implications of causality, as captured by the Kramers-Kronig relations between the real and imaginary parts of a linear response function, are familiar parts of the physics curriculum. In 1937, Bode derived a similar relation between the magnitude (response gain) and phase. Although the Kramers-Kronig relations are an equality, Bode's relation is effectively an inequality. This perhaps-surprising difference is explained using elementary examples and ultimately traces back to delays in the flow of information within the system formed by the physical object and measurement apparatus.Comment: 8 pages; American Journal of Physics, to appea
    • …
    corecore