32 research outputs found
Primary biliary cirrhosis
Primary biliary cirrhosis (PBC) is an immune-mediated chronic cholestatic liver disease with a slowly progressive course. Without treatment, most patients eventually develop fibrosis and cirrhosis of the liver and may need liver transplantation in the late stage of disease. PBC primarily affects women (female preponderance 9–10:1) with a prevalence of up to 1 in 1,000 women over 40 years of age. Common symptoms of the disease are fatigue and pruritus, but most patients are asymptomatic at first presentation. The diagnosis is based on sustained elevation of serum markers of cholestasis, i.e., alkaline phosphatase and gamma-glutamyl transferase, and the presence of serum antimitochondrial antibodies directed against the E2 subunit of the pyruvate dehydrogenase complex. Histologically, PBC is characterized by florid bile duct lesions with damage to biliary epithelial cells, an often dense portal inflammatory infiltrate and progressive loss of small intrahepatic bile ducts. Although the insight into pathogenetic aspects of PBC has grown enormously during the recent decade and numerous genetic, environmental, and infectious factors have been disclosed which may contribute to the development of PBC, the precise pathogenesis remains enigmatic. Ursodeoxycholic acid (UDCA) is currently the only FDA-approved medical treatment for PBC. When administered at adequate doses of 13–15 mg/kg/day, up to two out of three patients with PBC may have a normal life expectancy without additional therapeutic measures. The mode of action of UDCA is still under discussion, but stimulation of impaired hepatocellular and cholangiocellular secretion, detoxification of bile, and antiapoptotic effects may represent key mechanisms. One out of three patients does not adequately respond to UDCA therapy and may need additional medical therapy and/or liver transplantation. This review summarizes current knowledge on the clinical, diagnostic, pathogenetic, and therapeutic aspects of PBC
Cattle genome-wide analysis reveals genetic signatures in trypanotolerant N'Dama
Abstract Background Indigenous cattle in Africa have adapted to various local environments to acquire superior phenotypes that enhance their survival under harsh conditions. While many studies investigated the adaptation of overall African cattle, genetic characteristics of each breed have been poorly studied. Results We performed the comparative genome-wide analysis to assess evidence for subspeciation within species at the genetic level in trypanotolerant N’Dama cattle. We analysed genetic variation patterns in N’Dama from the genomes of 101 cattle breeds including 48 samples of five indigenous African cattle breeds and 53 samples of various commercial breeds. Analysis of SNP variances between cattle breeds using wMI, XP-CLR, and XP-EHH detected genes containing N’Dama-specific genetic variants and their potential associations. Functional annotation analysis revealed that these genes are associated with ossification, neurological and immune system. Particularly, the genes involved in bone formation indicate that local adaptation of N’Dama may engage in skeletal growth as well as immune systems. Conclusions Our results imply that N’Dama might have acquired distinct genotypes associated with growth and regulation of regional diseases including trypanosomiasis. Moreover, this study offers significant insights into identifying genetic signatures for natural and artificial selection of diverse African cattle breeds
Surface lymphotoxin alpha/beta complex is required for the development of peripheral lymphoid organs
For more than a decade, the biological roles and the apparent redundancy of the cytokines tumor necrosis factor (TNF) and lymphotoxin (LT) have been debated. LT alpha exists in its soluble form as a homotrimer, which like TNF only binds the TNF receptors, TNF-R55 or TNF-R75. The cell surface form of LT exists as a heteromer of LT alpha and LT beta subunits and this complex specifically binds the LT beta receptor (LT beta-R). To discriminate the functions of the LT and TNF systems, soluble LT beta-R-immunoglobulin (Ig) or TNF-R-Ig fusion proteins were introduced into embryonic circulation by injecting pregnant mice. Exposure to LT beta-R-Ig during gestation disrupted lymph node development and splenic architecture in the progeny indicating that both effects are mediated by the surface LT alpha/beta complex. These data are the first to identify a cell surface ligand involved in immune organ morphogenesis. Moreover, they unambiguously discriminate the functions of the various TNF/LT ligands, provide a unique model to study compartmentalization of immune responses and illustrate the generic utility of receptor-Ig fusion proteins for dissecting/ordering ontogenetic events in the absence of genetic modifications
The sequential role of lymphotoxin and B cells in the development of splenic follicles
The transfer of lymphocytes into severe combined immunodeficiency (SCID) mice induces a series of histological changes in the spleen, including the appearance of mature follicular dendritic cells (FDCs). Studies were undertaken to clarify the role of lymphotoxin (LT) in this process. The results show that SCID mice have a small and partially differentiated white pulp containing marginal zone and interdigitating dendritic cells, but lacking FDCs. Transferred spleen cells can segregate into T and B cell areas shortly after their injection to SCID mice. This ability is dependent on signaling through LT-beta receptor (LT-betaR), since blocking ligand-receptor interaction in recipient SCID mice ablates the capacity of the transferred cells to segregate. A week after lymphocyte transfer, host-derived FDCs appeared in the reconstituted SCID mice. This induction of FDCs is dependent on LT-betaR signaling by B cells since LT-alpha-/- B cells are incapable of inducing development of FDCs in SCID mice, even after cotransfer of LT-alpha+/+ T cells. Therefore, LT plays at least two discrete roles in splenic organization. First, it appears that LT induces the differentiation of the white pulp to create sites for lymphocyte segregation. Second, LT expression by B cells drives the maturation of FDCs and the organization of B cell follicles
Signaling through the lymphotoxin beta receptor induces the death of some adenocarcinoma tumor lines
Surface lymphotoxin (LT) is a heteromeric complex of LT-alpha and LT-beta chains that binds to the LT-beta receptor (LT-beta-R), a member of the tumor necrosis factor (TNF) family of receptors. The biological function of this receptor-ligand system is poorly characterized. Since signaling through other members of this receptor family can induce cell death, e.g., the TNF and Fas receptors, it is important to determine if similar signaling events can be communicated via the LT-beta-R. A soluble form of the surface complex was produced by coexpression of LT-alpha and a converted form of LT-beta wherein the normally type II LT-beta membrane protein was changed to a type I secreted form. Recombinant LT-alpha 1/beta 2 was cytotoxic to the human adenocarcinoma cell lines HT-29, WiDr, MDA-MB-468, and HT-3 when added with the synergizing agent interferon (IFN) gamma. When immobilized on a plastic surface, anti-LT-beta-R monoclonal antibodies (mAbs) induced the death of these cells, demonstrating direct signaling via the LT-beta-R. Anti-LT-beta-R mAbs were also identified that inhibited ligand-induced cell death, whereas others were found to potentiate the activity of the ligand when added in solution. The human WiDr adenocarcinoma line forms solid tumors in immunocompromised mice, and treatment with an anti-LT-beta-R antibody combined with human IFN-gamma arrested tumor growth. The delineation of a biological signaling event mediated by the LT-beta-R opens a window for further studies on its immunological role, and furthermore, activation of the LT-beta-R may have an application in tumor therapy
A chemokine-driven positive feedback loop organizes lymphoid follicles
Lymphoid follicles are B-cell-rich compartments of lymphoid organs that function as sites of B-cell antigen encounter and differentiation. CXC chemokine receptor-5 (CXCR5) is required for B-cell migration to splenic follicles, but the requirements for homing to B-cell areas in lymph nodes remain to be defined. Here we show that lymph nodes contain two types of B-cell-rich compartment: follicles containing follicular dendritic cells, and areas lacking such cells. Using gene-targeted mice, we establish that B-lymphocyte chemoattractant (BLC/BCA1) and its receptor, CXCR5, are needed for B-cell homing to follicles in lymph nodes as well as in spleen. We also find that BLC is required for the development of most lymph nodes and Peyer's patches. In addition to mediating chemoattraction, BLC induces B cells to up-regulate membrane lymphotoxin alpha1beta2, a cytokine that promotes follicular dendritic cell development and BLC expression, establishing a positive feedback loop that is likely to be important in follicle development and homeostasis. In germinal centres the feedback loop is overridden, with B-cell lymphotoxin alpha1beta2 expression being induced by a mechanism independent of BLC
Clusterin Is a Potential Lymphotoxin Beta Receptor Target That Is Upregulated and Accumulates in Germinal Centers of Mouse Spleen during Immune Response
<div><p>Clusterin is a multifunctional protein that participates in tissue remodeling, apoptosis, lipid transport, complement-mediated cell lysis and serves as an extracellular chaperone. The role of clusterin in cancer and neurodegeneration has been extensively studied, however little is known about its functions in the immune system. Using expression profiling we found that clusterin mRNA is considerably down-regulated in mouse spleen stroma upon knock-out of lymphotoxin β receptor which plays pivotal role in secondary lymphoid organ development, maintenance and function. Using immunohistochemistry and western blot we studied clusterin protein level and distribution in mouse spleen and mesenteric lymph nodes in steady state and upon immunization with sheep red blood cells. We showed that clusterin protein, represented mainly by the secreted heterodimeric form, is present in all stromal compartments of secondary lymphoid organs except for marginal reticular cells. Clusterin protein level rose after immunization and accumulated in light zones of germinal centers in spleen - the effect that was not observed in lymph nodes. Regulation of clusterin expression by the lymphotoxin beta signaling pathway and its protein dynamics during immune response suggest a specific role of this enigmatic protein in the immune system that needs further study.</p></div