9,326 research outputs found

    Depolarization volume and correlation length in the homogenization of anisotropic dielectric composites

    Full text link
    In conventional approaches to the homogenization of random particulate composites, both the distribution and size of the component phase particles are often inadequately taken into account. Commonly, the spatial distributions are characterized by volume fraction alone, while the electromagnetic response of each component particle is represented as a vanishingly small depolarization volume. The strong-permittivity-fluctuation theory (SPFT) provides an alternative approach to homogenization wherein a comprehensive description of distributional statistics of the component phases is accommodated. The bilocally-approximated SPFT is presented here for the anisotropic homogenized composite which arises from component phases comprising ellipsoidal particles. The distribution of the component phases is characterized by a two-point correlation function and its associated correlation length. Each component phase particle is represented as an ellipsoidal depolarization region of nonzero volume. The effects of depolarization volume and correlation length are investigated through considering representative numerical examples. It is demonstrated that both the spatial extent of the component phase particles and their spatial distributions are important factors in estimating coherent scattering losses of the macroscopic field.Comment: Typographical error in eqn. 16 in WRM version is corrected in arxiv versio

    Full-revivals in 2-D Quantum Walks

    Full text link
    Recurrence of a random walk is described by the Polya number. For quantum walks, recurrence is understood as the return of the walker to the origin, rather than the full-revival of its quantum state. Localization for two dimensional quantum walks is known to exist in the sense of non-vanishing probability distribution in the asymptotic limit. We show on the example of the 2-D Grover walk that one can exploit the effect of localization to construct stationary solutions. Moreover, we find full-revivals of a quantum state with a period of two steps. We prove that there cannot be longer cycles for a four-state quantum walk. Stationary states and revivals result from interference which has no counterpart in classical random walks

    Towards gravitationally assisted negative refraction of light by vacuum

    Full text link
    Propagation of electromagnetic plane waves in some directions in gravitationally affected vacuum over limited ranges of spacetime can be such that the phase velocity vector casts a negative projection on the time-averaged Poynting vector. This conclusion suggests, inter alia, gravitationally assisted negative refraction by vacuum.Comment: 6 page

    Robust and Efficient Sifting-Less Quantum Key Distribution Protocols

    Full text link
    We show that replacing the usual sifting step of the standard quantum-key-distribution protocol BB84 by a one-way reverse reconciliation procedure increases its robustness against photon-number-splitting (PNS) attacks to the level of the SARG04 protocol while keeping the raw key-rate of BB84. This protocol, which uses the same state and detection than BB84, is the m=4 member of a protocol-family using m polarization states which we introduce here. We show that the robustness of these protocols against PNS attacks increases exponentially with m, and that the effective keyrate of optimized weak coherent pulses decreases with the transmission T like T^{1+1/(m-2)}

    Landscape of solutions in constraint satisfaction problems

    Get PDF
    We present a theoretical framework for characterizing the geometrical properties of the space of solutions in constraint satisfaction problems, together with practical algorithms for studying this structure on particular instances. We apply our method to the coloring problem, for which we obtain the total number of solutions and analyze in detail the distribution of distances between solutions.Comment: 4 pages, 4 figures. Replaced with published versio

    Community Detection as an Inference Problem

    Full text link
    We express community detection as an inference problem of determining the most likely arrangement of communities. We then apply belief propagation and mean-field theory to this problem, and show that this leads to fast, accurate algorithms for community detection.Comment: 4 pages, 2 figure

    Stress corrosion cracking of titanium alloys at ambient temperature in aqueous solutions

    Get PDF
    Stress corrosion tests of titanium alloys in distilled and aqueous salt solutions at ambient temperatures employing single edge notched specimen

    Universal diffusion near the golden chaos border

    Full text link
    We study local diffusion rate DD in Chirikov standard map near the critical golden curve. Numerical simulations confirm the predicted exponent α=5\alpha=5 for the power law decay of DD as approaching the golden curve via principal resonances with period qnq_n (D∼1/qnαD \sim 1/q^{\alpha}_n). The universal self-similar structure of diffusion between principal resonances is demonstrated and it is shown that resonances of other type play also an important role.Comment: 4 pages Latex, revtex, 3 uuencoded postscript figure

    Stress corrosion cracking of titanium alloys at ambient temperature in aqueous solutions Quarterly progress report, 1 Jan. - 31 Mar. 1967

    Get PDF
    Stress corrosion cracking of titanium alloys at ambient temperature in aqueous solution

    AdHealth:A feasibility study to measure digital food marketing to adolescents through Facebook

    Get PDF
    OBJECTIVE: To test the feasibility of a browser extension to estimate the exposure of adolescents to (un)healthy food and beverage advertisements on Facebook and the persuasive techniques used to market these foods and&nbsp;beverages. DESIGN: A Chrome browser extension (AdHealth) was developed to automatically collect advertisements seen by participants on their personal Facebook accounts. Information was extracted and sent to a web server by parsing the Document Object Model tree representation of Facebook web pages. Key information retrieved included the advertisement type seen and duration of each ad sighting. The WHO-Europe Nutrient Profile Model was used to classify the healthiness of products advertised as permitted (healthy) or not permitted (unhealthy) to be advertised to&nbsp;children. SETTING: Auckland, New&nbsp;Zealand. PARTICIPANTS: Thirty-four Facebook users aged 16-18&nbsp;years. RESULTS: The browser extension retrieved 4973 advertisements from thirty-four participants, of which 204 (4 %) were food-related, accounting for 1·1 % of the exposure duration. Of those food advertisements, 98 % were classified as not permitted, and 33·7 and 31·9 %, respectively, of those featured promotional characters or premium offers. The mean rate of exposure to not permitted food was 4·8 (sd = 2·5) advertisements per hour spent on&nbsp;Facebook. CONCLUSIONS: Using a Chrome extension to monitor exposure to unhealthy food and beverage advertisements showed that the vast majority of advertisements were for unhealthy products, despite numerous challenges to implementation. Further efforts are needed to develop tools for use across other social media platforms and mobile devices, and policies to protect young people from digital food&nbsp;advertising.</p
    • …
    corecore