9 research outputs found

    HDAC inhibition is associated to valproic acid induction of early megakaryocytic markers

    Get PDF
    Valproic acid (VPA), a histone deacetylase inhibitor, causes differentiation in different cell lines and in a cell-specific manner; yet, its effect on megakaryocytic (MK) differentiation has not been studied. We evaluated whether VPA induces MK differentiation in a UT-7 cell line through histone acetylation in the GpIIIa gene region and activation of the ERK pathway. UT-7 cells, derived from megakaryoblastic leukemia, were treated with VPA at various concentrations, and the expression of differentiation markers as well as the gene expression profile was assessed. Flow cytometry, immunoblot analysis, and RT-PCR demonstrated that VPA induced the expression of the early MK markers GpIIIa (CD61) and GpIIb/IIIa (CD41) in a dose-dependent manner. The VPA-treated cells showed hyperacetylation of the histones H3 and H4; in particular, histone acetylation was found to have been associated with CD61 expression, in that the GpIIIa promoter showed H4 hyperacetylation, as demonstrated by the chromatin immunoprecipitation assay. Furthermore, activation of the ERK pathway was involved in VPA-mediated CD61/CD41 expression and in cell adhesion, as demonstrated by using the MEK/ERK inhibitor U0126. In conclusion, the capacity of VPA to commit UT-7 cells to MK differentiation is mediated by its inhibitory action on HDAC and the long-lived activation of ERK1/2

    Key role of MEK/ERK pathway in sustaining tumorigenicity and in vitro radioresistance of embryonal rhabdomyosarcoma stem-like cell population

    Get PDF
    The identification of signaling pathways that affect the cancer stem-like phenotype may provide insights into therapeutic targets for combating embryonal rhabdomyosarcoma. The aim of this study was to investigate the role of the MEK/ERK pathway in controlling the cancer stem-like phenotype using a model of rhabdospheres derived from the embryonal rhabdomyosarcoma cell line (RD)

    Stromal cell–derived factor 1α increases polyploidization of megakaryocytes generated by human hematopoietic progenitor cells

    Get PDF
    AbstractThe alpha chemokine receptor CXCR4 has been shown to be expressed on human hematopoietic progenitor cells and during the megakaryocytic differentiation pathway. Stromal cell–derived factor 1 (SDF-1) is the ligand for CXCR4. In this study, the role of SDF-1α in megakaryocytopoiesis was investigated. CD34+ progenitors purified from peripheral blood were grown in serum-free liquid suspension culture supplemented with thrombopoietin to obtain a virtually pure megakaryocytic progeny. In this condition, the addition of SDF-1α gives rise to megakaryocytes (MKs) showing an increased DNA content and a rise of lobated nuclei, as compared with untreated cells: at day 5, approximately 20% of the cells already showed the presence of more than one nuclear lobe versus fewer than 5% in the control cells; at day 12, approximately 85% of the cells were of large size and markedly polyploid, whereas approximately 60% of the control cells were polyploid, showed fewer lobes, and were a smaller size. This effect was dose-dependent and did not affect the megakaryocytic proliferation. Experiments with the mitogen-activated protein kinase (MAPK) inhibitor PD98059 suggested a role for MAPK pathway on SDF-1α–induced endomitosis. Furthermore, SDF-1α induced a significant increase in the number of proplatelet-bearing MKs and promoted the migration of megakaryocytic cells. Treatment with SDF-1α caused reduction in CXCR4 abundance on the plasma membrane, seemingly owing to receptor internalization. Furthermore, the presence of SDF-1α did not affect the expression of megakaryocytic markers, indicating that differentiation and polyploidization are independently regulated events

    The botanical drug PBI-05204, a supercritical CO2 extract of Nerium oleander, sensitizes alveolar and embryonal rhabdomyosarcoma to radiotherapy in vitro and in vivo

    Get PDF
    : Treatment of rhabdomyosarcoma (RMS), the most common a soft tissue sarcoma in childhood, provides intensive multimodal therapy, with radiotherapy (RT) playing a critical role for local tumor control. However, since RMS efficiently activates mechanisms of resistance to therapies, despite improvements, the prognosis remains still largely unsatisfactory, mainly in RMS expressing chimeric oncoproteins PAX3/PAX7-FOXO1, and fusion-positive (FP)-RMS. Cardiac glycosides (CGs), plant-derived steroid-like compounds with a selective inhibitory activity of the Na+/K+-ATPase pump (NKA), have shown antitumor and radio-sensitizing properties. Herein, the therapeutic properties of PBI-05204, an extract from Nerium oleander containing the CG oleandrin already studied in phase I and II clinical trials for cancer patients, were investigated, in vitro and in vivo, against FN- and FP-RMS cancer models. PBI-05204 induced growth arrest in a concentration dependent manner, with FP-RMS being more sensitive than FN-RMS, by differently regulating cell cycle regulators and commonly upregulating cell cycle inhibitors p21Waf1/Cip1 and p27Cip1/Kip1. Furthermore, PBI-05204 concomitantly induced cell death on both RMS types and senescence in FN-RMS. Notably, PBI-05204 counteracted in vitro migration and invasion abilities and suppressed the formation of spheroids enriched in CD133+ cancer stem cells (CSCs). PBI-05204 sensitized both cell types to RT by improving the ability of RT to induce G2 growth arrest and counteracting the RT-induced activation of both Non-Homologous End-Joining and homologous recombination DSBs repair pathways. Finally, the antitumor and radio-sensitizing proprieties of PBI-05204 were confirmed in vivo. Notably, both in vitro and in vivo evidence confirmed the higher sensitivity to PBI-05204 of FP-RMS. Thus, PBI-05204 represents a valid radio-sensitizing agent for the treatment of RMS, including the intrinsically radio-resistant FP-RMS

    Silk Fibroin Scaffolds as Biomaterials for 3D Mesenchymal Stromal Cells Cultures

    No full text
    Silk fibroin (SF), a protein-based fiber extracted from Bombyx mori cocoons, has recently emerged with great potential for the biomedical field to be used as a biomaterial processable in a variety of formats and applications, due to its natural characteristics. The aims of the present study were to characterize the structural properties of the SF scaffolds, in the format of porous sponges, and to investigate their feasibility to support the adhesion of mesenchymal stromal/stem cells isolated from human Wharton’s jelly of the umbilical cord (WJ-MSC). Adhesion is a prerequisite for using the SF scaffold as biomaterial for supporting three-dimensional (3D) WJ-MSC cultures for several applications. The integration among micro-computed tomography, confocal analysis, and field emission scanning electron microscopy allowed carrying out a deep investigation based on quantitative morphological parameters and qualitative observations at high resolution. High levels of porosity, interconnection, and contact surface–volume ratio confirmed the appropriateness of the designed SF porous scaffolds as supports for cell cultures. WJ-MSC was demonstrated to be capable of adhering to and colonizing the SF scaffold applicable as a 3D cell culture system, of conducting in vitro experiments in a more controlled environment, and possibly of being used in tissue engineering, regenerative medicine, and applications in oncology

    Clinically relevant radioresistant rhabdomyosarcoma cell lines: functional, molecular and immune-related characterization

    Get PDF
    Background: The probability of local tumor control after radiotherapy (RT) remains still miserably poor in pediatric rhabdomyosarcoma (RMS). Thus, understanding the molecular mechanisms responsible of tumor relapse is essential to identify personalized RT-based strategies. Contrary to what has been done so far, a correct characterization of cellular radioresistance should be performed comparing radioresistant and radiosensitive cells with the same isogenic background. Methods: Clinically relevant radioresistant (RR) embryonal (RD) and alveolar (RH30) RMS cell lines have been developed by irradiating them with clinical-like hypo-fractionated schedule. RMS-RR cells were compared to parental isogenic counterpart (RMS-PR) and studied following the radiobiological concept of the "6Rs", which stand for repair, redistribution, repopulation, reoxygenation, intrinsic radioresistance and radio-immuno-biology. Results: RMS-RR cell lines, characterized by a more aggressive and in vitro pro-metastatic phenotype, showed a higher ability to i) detoxify from reactive oxygen species; ii) repair DNA damage by differently activating non-homologous end joining and homologous recombination pathways; iii) counteract RT-induced G2/M cell cycle arrest by re-starting growth and repopulating after irradiation; iv) express cancer stem-like profile. Bioinformatic analyses, performed to assess the role of 41 cytokines after RT exposure and their network interactions, suggested TGF-β, MIF, CCL2, CXCL5, CXCL8 and CXCL12 as master regulators of cancer immune escape in RMS tumors. Conclusions: These results suggest that RMS could sustain intrinsic and acquire radioresistance by different mechanisms and indicate potential targets for future combined radiosensitizing strategies

    Romidepsin (FK228) fails in counteracting the transformed phenotype of rhabdomyosarcoma cells but efficiently radiosensitizes, in vitro and in vivo, the alveolar phenotype subtype

    No full text
    PURPOSE Herein we describe the in vitro and in vivo activity of FK228 (Romidepsin), an inhibitor of class I HDACs, in counteracting and radiosensitizing embryonal (ERMS, fusion-negative) and alveolar (ARMS, fusion-positive) rhabdomyosarcoma (RMS).METHODS RH30 (ARMS, fusion-positive) and RD (ERMS, fusion-negative) cell lines and human multipotent mesenchymal stromal cells (HMSC) were used. Flow cytometry analysis, RT-qPCR, western blotting and enzymatic assays were performed. Irradiation was delivered by using an x-6 MV photon linear accelerator. FK228 (1.2 mg/kg) in vivo activity, combined or not with radiation therapy (2 Gy), was assessed in murine xenografts.RESULTS Compared to HMSC, RMS expressed low levels of class I HDACs. In vitro, FK228, as single agents, reversibly downregulated class I HDACs expression and activity, and induced oxidative stress, DNA damage and a concomitant growth arrest associated to PARP-1-mediated transient non-apoptotic cell death. Surviving cells upregulated the expression of cyclin A, B, D1, p27, Myc and activated PI3K/Akt/mTOR and MAPK signaling, known to be differently involved in cancer chemoresistance. Interestingly, while no radiosensitizing effects were detected, in vitro or in vivo, on RD cells, FK228 markedly radiosensitized RH30 cells by impairing antioxidant and DSBs repair pathways in vitro. Further, FK228 when combined with RT in vivo significantly reduced tumor mass in mouse RH30 xenografts.CONCLUSION FK228 did not show antitumor activity as single agent whilst its combination with RT resulted in radiosensitization of fusion-positive RMS cells, thus representing a possible strategy for the treatment of the most aggressive RMS subtype
    corecore