242 research outputs found

    The winter urban heat island: Impacts on cold-related mortality in a highly urbanized European region for present and future climate.

    Get PDF
    Exposure to heat has a range of potential negative impacts on human health; hot weather may exacerbate cardiovascular and respiratory illness or lead to heat stroke and death. Urban populations are at increased risk due to the Urban Heat Island (UHI) effect (higher urban temperatures compared with rural ones). This has led to extensive investigation of the summertime UHI and its effects, whereas far less research focuses on the wintertime UHI. Exposure to low temperature also leads to a range of illnesses, and in fact, in the UK, annual cold-related mortality outweighs heat-related mortality. It is not clearly understood to what extent the wintertime UHI may protect against cold related mortality. In this study we quantify the UHI intensity in wintertime for a heavily urbanized UK region (West Midlands, including Birmingham) using a regional weather model, and for the first time, use a health impact assessment (HIA) to estimate the associated impact on cold-related mortality. We show that the population-weighted mean winter UHI intensity was +2.3 °C in Birmingham city center, and comparable with that of summer. Our results suggest a potential protective effect of the wintertime UHI, equivalent to 266 cold-related deaths avoided (~15% of total cold-related mortality over ~11 weeks). When including the impacts of climate change, our results suggest that the number of heat-related deaths associated with the summer UHI will increase from 96 (in 2006) to 221 in the 2080s, based on the RCP8.5 emissions pathway. The protective effect of the wintertime UHI is projected to increase only slightly from 266 cold-related deaths avoided in 2009 to 280 avoided in the 2080s. The different effects of the UHI in winter and summer should be considered when assessing interventions in the built environment for reducing summer urban heat, and our results suggest that the future burden of temperature-related mortality associated with the UHI is likely to increase in summer relative to winter

    Comparing temperature-related mortality impacts of cool roofs in winter and summer in a highly urbanized European region for present and future climate

    Get PDF
    Human health can be negatively impacted by hot or cold weather, which often exacerbates respiratory or cardiovascular conditions and increases the risk of mortality. Urban populations are at particular increased risk of effects from heat due to the Urban Heat Island (UHI) effect (higher urban temperatures compared with rural ones). This has led to extensive investigation of the summertime UHI, its impacts on health, and also the consideration of interventions such as reflective 'cool' roofs to help reduce summertime overheating effects. However, interventions aimed at limiting summer heat are rarely evaluated for their effects in wintertime, and thus their overall annual net impact on temperature-related health effects are poorly understood. In this study we use a regional weather model to simulate the winter 2009/10 period for an urbanized region of the UK (Birmingham and the West Midlands), and use a health impact assessment to estimate the impact of reflective 'cool' roofs (an intervention usually aimed at reducing the UHI in summer) on cold-related mortality in winter. Cool roofs have been shown to be effective at reducing maximum temperatures during summertime. In contrast to the summer, we find that cool roofs have a minimal effect on ambient air temperatures in winter. Although the UHI in summertime can increase heat-related mortality, the wintertime UHI can have benefits to health, through avoided cold-related mortality. Our results highlight the potential annual net health benefits of implementing cool roofs to reduce temperature-related mortality in summer, without reducing the protective UHI effect in winter. Further, we suggest that benefits of cool roofs may increase in future, with a doubling of the number of heat-related deaths avoided by the 2080s (RCP8.5) compared to summer 2006, and with insignificant changes in the impact of cool-roofs on cold-related mortality. These results further support reflective 'cool' roof implementation strategies as effective interventions to protect health, both today and in future

    Assessing urban population vulnerability and environmental risks across an urban area during heatwaves - Implications for health protection.

    Get PDF
    Heatwaves can lead to a range of adverse impacts including increased risk of illness and mortality; the heatwave in August 2003 has been associated with ~70,000 deaths across Europe. Due to climate change, heatwaves are likely to become more intense, more frequent and last longer in the future. A number of factors may influence risks associated with heat exposure, such as population age, housing type, and location within the Urban Heat Island, and such factors may not be evenly distributed spatially across a region. We simulated and analysed two major heatwaves in the UK, in August 2003 and July 2006, to assess spatial vulnerability to heat exposure across the West Midlands, an area containing ~5 million people, and how ambient temperature varies in relation to factors that influence heat-related health effects, through weighting of ambient temperatures according to distributions of these factors across an urban area. Additionally we present quantification of how particular centres such as hospitals are exposed to the UHI, by comparing temperatures at these locations with average temperatures across the region, and presenting these results for both day and night times. We find that UHI intensity was substantial during both heatwaves, reaching a maximum of +9.6°C in Birmingham in July 2006. Previous work has shown some housing types, such as flats and terraced houses, are associated with increased risk of overheating, and our results show that these housing types are generally located within the warmest parts of the city. Older age groups are more susceptible to the effects of heat. Our analysis of distribution of population based on age group showed there is only small spatial variation in ambient temperature that different age groups are exposed to. Analysis of relative deprivation across the region indicates more deprived populations are located in the warmest parts of the city

    Coronavirus seasonality, respiratory infections and weather.

    Get PDF
    BACKGROUND: The survival of coronaviruses are influenced by weather conditions and seasonal coronaviruses are more common in winter months. We examine the seasonality of respiratory infections in England and Wales and the associations between weather parameters and seasonal coronavirus cases. METHODS: Respiratory virus disease data for England and Wales between 1989 and 2019 was extracted from the Second-Generation Surveillance System (SGSS) database used for routine surveillance. Seasonal coronaviruses from 2012 to 2019 were compared to daily average weather parameters for the period before the patient's specimen date with a range of lag periods. RESULTS: The seasonal distribution of 985,524 viral infections in England and Wales (1989-2019) showed coronavirus infections had a similar seasonal distribution to influenza A and bocavirus, with a winter peak between weeks 2 to 8. Ninety percent of infections occurred where the daily mean ambient temperatures were below 10 °C; where daily average global radiation exceeded 500 kJ/m2/h; where sunshine was less than 5 h per day; or where relative humidity was above 80%. Coronavirus infections were significantly more common where daily average global radiation was under 300 kJ/m2/h (OR 4.3; CI 3.9-4.6; p < 0.001); where average relative humidity was over 84% (OR 1.9; CI 3.9-4.6; p < 0.001); where average air temperature was below 10 °C (OR 6.7; CI 6.1-7.3; p < 0.001) or where sunshine was below 4 h (OR 2.4; CI 2.2-2.6; p < 0.001) when compared to the distribution of weather values for the same time period. Seasonal coronavirus infections in children under 3 years old were more frequent at the start of an annual epidemic than at the end, suggesting that the size of the susceptible child population may be important in the annual cycle. CONCLUSIONS: The dynamics of seasonal coronaviruses reflect immunological, weather, social and travel drivers of infection. Evidence from studies on different coronaviruses suggest that low temperature and low radiation/sunlight favour survival. This implies a seasonal increase in SARS-CoV-2 may occur in the UK and countries with a similar climate as a result of an increase in the R0 associated with reduced temperatures and solar radiation. Increased measures to reduce transmission will need to be introduced in winter months for COVID-19

    Comparison of built environment adaptations to heat exposure and mortality during hot weather, West Midlands region, UK

    Get PDF
    There is growing recognition of the need to improve protection against the adverse health effects of hot weather in the context of climate change. We quantify the impact of the Urban Heat Island (UHI) and selected adaptation measures made to dwellings on temperature exposure and mortality in the West Midlands region of the UK. We used 1) building physics models to assess indoor temperatures, initially in the existing housing stock and then following adaptation measures (energy efficiency building fabric upgrades and/or window shutters), of representative dwelling archetypes using data from the English Housing Survey (EHS), and 2) modelled UHI effect on outdoor temperatures. The ages of residents were combined with evidence on the heat-mortality relationship to estimate mortality risk and to quantify population-level changes in risk following adaptations to reduce summertime heat exposure. Results indicate that the UHI effect accounts for an estimated 21% of mortality. External shutters may reduce heat-related mortality by 30-60% depending on weather conditions, while shutters in conjunction with energy-efficient retrofitting may reduce risk by up to 52%. The use of shutters appears to be one of the most effective measures providing protection against heat-related mortality during periods of high summer temperatures, although their effectiveness may be limited under extreme temperatures. Energy efficiency adaptations to the dwellings and measures to increase green space in the urban environment to combat the UHI effect appear to be less beneficial for reducing heat-related mortality

    Changes in microphytobenthos fluorescence over a tidal cycle: implications for sampling designs

    Get PDF
    Intertidal microphytobenthos (MPB) are important primary producers and provide food for herbivores in soft sediments and on rocky shores. Methods of measuring MPB biomass that do not depend on the time of collection relative to the time of day or tidal conditions are important in any studies that need to compare temporal or spatial variation, effects of abiotic factors or activity of grazers. Pulse amplitude modulated (PAM) fluorometry is often used to estimate biomass of MPB because it is a rapid, non-destructive method, but it is not known how measures of fluorescence are altered by changing conditions during a period of low tide. We investigated this experimentally using in situ changes in minimal fluorescence (F) on a rocky shore and on an estuarine mudflat around Sydney (Australia), during low tides. On rocky shores, the time when samples are taken during low tide had little direct influence on measures of fluorescence as long as the substratum is dry. Wetness from wave-splash, seepage from rock pools, run-off, rainfall, etc., had large consequences for any comparisons. On soft sediments, fluorescence was decreased if the sediment dried out, as happens during low-spring tides on particularly hot and dry days. Surface water affected the response of PAM and therefore measurements used to estimate MPB, emphasising the need for care to ensure that representative sampling is done during low tide

    Beyond climate change and health: Integrating broader environmental change and natural environments for public health protection and promotion in the UK

    Get PDF
    This is the final version of the article. Available from MDPI via the DOI in this record.Increasingly, the potential short and long-term impacts of climate change on human health and wellbeing are being demonstrated. However, other environmental change factors, particularly relating to the natural environment, need to be taken into account to understand the totality of these interactions and impacts. This paper provides an overview of ongoing research in the Health Protection Research Unit (HPRU) on Environmental Change and Health, particularly around the positive and negative effects of the natural environment on human health and well-being and primarily within a UK context. In addition to exploring the potential increasing risks to human health from water-borne and vector-borne diseases and from exposure to aeroallergens such as pollen, this paper also demonstrates the potential opportunities and co-benefits to human physical and mental health from interacting with the natural environment. The involvement of a Health and Environment Public Engagement (HEPE) group as a public forum of "critical friends" has proven useful for prioritising and exploring some of this research; such public involvement is essential to minimise public health risks and maximise the benefits which are identified from this research into environmental change and human health. Research gaps are identified and recommendations made for future research into the risks, benefits and potential opportunities of climate and other environmental change on human and planetary health.The research was funded in part by the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Change and Health at the London School of Hygiene and Tropical Medicine in partnership with Public Health England (PHE), and in collaboration with the University of Exeter, University College London, and the Met Office (HPRU-2012-10016); the UK Medical Research Council (MRC) and UK Natural Environment Research Council (NERC) for the MEDMI Project (MR/K019341/1, https: //www.data-mashup.org.uk); the Economic and Social Research Council (ESRC) Project (ES/P011489/1); and the NIHR Knowledge Mobilisation Research Fellowship for Maguire

    The reflexive potential of silence:Emotions, the ‘everyday’ and ethical international relations

    Get PDF
    This article argues on behalf of an autoethnographic methodology as one, but not the only, method suited to the excavation of the emotions of everyday international relations. I suggest, drawing on my own lived experiences of writing the Life in the United Kingdom Test specifically, and being ordered deported from the United Kingdom more broadly, that a reflexive practice informed by silence allows scholars to attend to the otherwise discounted and excluded forms of emotional knowledge. As my story unfolds, and the transformative potential of trauma is rehearsed, the possibility of excavating otherwise silenced emotions, guided by an affective empathy, comes to the fore. I suggest, building on my own lived experience, that as the researcher cum agent embraces this position, discounted and discarded stories are revisited. In so doing I present a piece of evocative autoethnography in and of itself while demonstrating the role that emotions can play in the construction of everyday practices of International Relations

    Temporal trends in hospitalisation for stroke recurrence following incident hospitalisation for stroke in Scotland

    Get PDF
    &lt;p&gt;Background: There are few studies that have investigated temporal trends in risk of recurrent stroke. The aim of this study was to examine temporal trends in hospitalisation for stroke recurrence following incident hospitalisation for stroke in Scotland during 1986 to 2001.&lt;/p&gt; &lt;p&gt;Methods: Unadjusted survival analysis of time to first event, hospitalisation for recurrent stroke or death, was undertaken using the cumulative incidence method which takes into account competing risks. Regression on cumulative incidence functions was used to model the temporal trends of first recurrent stroke with adjustment for age, sex, socioeconomic status and comorbidity. Complete five year follow-up was obtained for all patients. Restricted cubic splines were used to determine the best fitting relationship between the survival events and study year.&lt;/p&gt; &lt;p&gt;Results: There were 128,511 incident hospitalisations for stroke in Scotland between 1986 and 2001, 57,351 (45%) in men. A total of 13,835 (10.8%) patients had a recurrent hospitalisation for stroke within five years of their incident hospitalisation. Another 74,220 (57.8%) patients died within five years of their incident hospitalisation without first having a recurrent hospitalisation for stroke. Comparing incident stroke hospitalisations in 2001 with 1986, the adjusted risk of recurrent stroke hospitalisation decreased by 27%, HR = 0.73 95% CI (0.67 to 0.78), and the adjusted risk of death being the first event decreased by 28%, HR = 0.72 (0.70 to 0.75).&lt;/p&gt; &lt;p&gt;Conclusions: Over the 15-year period approximately 1 in 10 patients with an incident hospitalisation for stroke in Scotland went on to have a hospitalisation for recurrent stroke within five years. Approximately 6 in 10 patients died within five years without first having a recurrent stroke hospitalisation. Using hospitalisation and death data from an entire country over a 20-year period we have been able to demonstrate not only an improvement in survival following an incident stroke, but also a reduction in the risk of a recurrent event.&lt;/p&gt
    • …
    corecore