928 research outputs found

    The Degree Of Alignment Between Circumbinary Disks And Their Binary Hosts

    Get PDF
    All four circumbinary (CB) protoplanetary disks orbiting short-period (P \u3c 20 days) double-lined spectroscopic binaries (SB2s)—a group that includes UZ Tau E, for which we present new Atacama Large Millimeter/Submillimeter Array data—exhibit sky-plane inclinations i disk that match, to within a few degrees, the sky-plane inclinations i★ of their stellar hosts. Although for these systems the true mutual inclinations θ between disk and binary cannot be directly measured because relative nodal angles are unknown, the near coincidence of i disk and i★ suggests that θ is small for these most compact of systems. We confirm this hypothesis using a hierarchical Bayesian analysis, showing that 68% of CB disks around short-period SB2s have θ \u3c 30. Near coplanarity of CB disks implies near coplanarity of CB planets discovered by Kepler, which in turn implies that the occurrence rate of close-in CB planets is similar to that around single stars. By contrast, at longer periods ranging from 30 to 105 days (where the nodal degeneracy can be broken via, e.g., binary astrometry), CB disks exhibit a wide range of mutual inclinations, from coplanar to polar. Many of these long-period binaries are eccentric, as their component stars are too far separated to be tidally circularized. We discuss how theories of binary formation and disk–binary gravitational interactions can accommodate all these observations

    Speckle noise and dynamic range in coronagraphic images

    Full text link
    This paper is concerned with the theoretical properties of high contrast coronagraphic images in the context of exoplanet searches. We derive and analyze the statistical properties of the residual starlight in coronagraphic images, and describe the effect of a coronagraph on the speckle and photon noise. Current observations with coronagraphic instruments have shown that the main limitations to high contrast imaging are due to residual quasi-static speckles. We tackle this problem in this paper, and propose a generalization of our statistical model to include the description of static, quasi-static and fast residual atmospheric speckles. The results provide insight into the effects on the dynamic range of wavefront control, coronagraphy, active speckle reduction, and differential speckle calibration. The study is focused on ground-based imaging with extreme adaptive optics, but the approach is general enough to be applicable to space, with different parameters.Comment: 31 pages, 18 figure

    Low thermal conductivity and promising thermoelectric performance in AxCoSb (A = V, Nb or Ta) half-Heuslers with inherent vacancies

    Get PDF
    Half-Heuslers with vacancies that are stabilised by a semiconducting electron count offer new opportunities for discovering good thermoelectric performance. Here, we present a comparative study of AxCoSb half-Heuslers (A = V, Nb or Ta) with intrinsic vacancies. Structural analysis demonstrates that each system has a clear preference for a specific vacancy concentration, increasing from 13(1)% (V) to 15(1)% (Nb) and 17(1)% (Ta) with evidence for ~3% V/Co inversion. Hall measurements confirm the decreasing carrier concentration but also signal profound changes to the electronic bandstructure with decreasing density of states effective masses for heavier A elements. V0.87CoSb has an ultralow lattice thermal conductivity, κlat ~ 2.2 W m-1 K-1, which cannot be explained within the Callaway framework. Coupled to a promising power factor, S2/ρ = 2.25 mW m-1 K-2, this results in ZT = 0.6 at 950 K. Nb0.85CoSb has a power factor of S2/ρ = 2.75 mW m-1 K-2 with κ ~ 4.75 W m-1 K-1, yielding a similar ZT = 0.5 at 950 K. Ta0.81CoSb has a microstructure consisting of smaller grains than the other samples, impacting both the carrier and thermal transport, yielding a power factor S2/ρ = 0.75 mW m-1 K-2 and ZT = 0.3 at 950 K. The ultralow κlat for V0.87CoSb may be linked to porosity effects that do not impact on the charge transport, thus affording a new route towards improved performance

    Gemini Planet Imager Observational Calibrations VI: Photometric and Spectroscopic Calibration for the Integral Field Spectrograph

    Full text link
    The Gemini Planet Imager (GPI) is a new facility instrument for the Gemini Observatory designed to provide direct detection and characterization of planets and debris disks around stars in the solar neighborhood. In addition to its extreme adaptive optics and corona graphic systems which give access to high angular resolution and high-contrast imaging capabilities, GPI contains an integral field spectrograph providing low resolution spectroscopy across five bands between 0.95 and 2.5 μ\mum. This paper describes the sequence of processing steps required for the spectro-photometric calibration of GPI science data, and the necessary calibration files. Based on calibration observations of the white dwarf HD 8049B we estimate that the systematic error in spectra extracted from GPI observations is less than 5%. The flux ratio of the occulted star and fiducial satellite spots within coronagraphic GPI observations, required to estimate the magnitude difference between a target and any resolved companions, was measured in the HH-band to be Δm=9.23±0.06\Delta m = 9.23\pm0.06 in laboratory measurements and Δm=9.39±0.11\Delta m = 9.39\pm 0.11 using on-sky observations. Laboratory measurements for the YY, JJ, K1K1 and K2K2 filters are also presented. The total throughput of GPI, Gemini South and the atmosphere of the Earth was also measured in each photometric passband, with a typical throughput in HH-band of 18% in the non-coronagraphic mode, with some variation observed over the six-month period for which observations were available. We also report ongoing development and improvement of the data cube extraction algorithm.Comment: 15 pages, 6 figures. Proceedings of the SPIE, 9147-30

    Accreting Protoplanets in the LkCa 15 Transition Disk

    Full text link
    Exoplanet detections have revolutionized astronomy, offering new insights into solar system architecture and planet demographics. While nearly 1900 exoplanets have now been discovered and confirmed, none are still in the process of formation. Transition discs, protoplanetary disks with inner clearings best explained by the influence of accreting planets, are natural laboratories for the study of planet formation. Some transition discs show evidence for the presence of young planets in the form of disc asymmetries or infrared sources detected within their clearings, as in the case of LkCa 15. Attempts to observe directly signatures of accretion onto protoplanets have hitherto proven unsuccessful. Here we report adaptive optics observations of LkCa 15 that probe within the disc clearing. With accurate source positions over multiple epochs spanning 2009 - 2015, we infer the presence of multiple companions on Keplerian orbits. We directly detect H{\alpha} emission from the innermost companion, LkCa 15 b, evincing hot (~10,000 K) gas falling deep into the potential well of an accreting protoplanet.Comment: 35 pages, 3 figures, 1 table, 9 extended data item

    Predictive value of subclinical autistic traits at age 14–15 months for behavioural and cognitive problems at age 3–5 years

    Get PDF
    It is unclear whether subclinical autistic traits at very young age are transient or stable, and have clinical relevance. This study investigated the relationship between early subclinical autistic traits and the occurrence of later developmental and behavioural problems as well as problems in cognitive and language functioning. Parents of infants aged 14–15 months from the general population completed the Early Screening of Autistic Traits Questionnaire (ESAT). Three groups of children with high, moderate, and low ESAT-scores (total n = 103) were selected. Follow-up assessments included the CBCL 1½–5 at age 3 years, and the SCQ, the ADI-R, the ADOS-G, a non-verbal intelligence test, and language tests for comprehension and production at age 4–5 years. None of the children met criteria for autism spectrum disorder at follow-up. Children with high ESAT-scores at 14–15 months showed significantly more internalizing and externalizing problems at age 3 years and scored significantly lower on language tests at age 4–5 years than children with moderate or low ESAT-scores. Further, significantly more children with high ESAT-scores (14/26, 53.8%) than with moderate and low ESAT-scores (5/36, 13.9% and 1/41, 2.4%, respectively) were in the high-risk/clinical range on one or more outcome domains (autistic symptoms, behavioural problems, cognitive and language abilities). Subclinical autistic traits at 14–15 months predict later behavioural problems and delays in cognitive and language functioning rather than later ASD-diagnoses. The theoretical implications of the findings lie in the pivotal role of early social and communication skills for the development of self-regulation of emotions and impulses. The practical implications bear on the early recognition of children at risk for behavioural problems and for language and cognitive problems
    corecore