339 research outputs found

    Gemini Planet Imager Observational Calibrations IV: Wavelength Calibration and Flexure Correction for the Integral Field Spectrograph

    Full text link
    We present the wavelength calibration for the lenslet-based Integral Field Spectrograph (IFS) that serves as the science instrument for the Gemini Planet Imager (GPI). The GPI IFS features a 2.7" x 2.7" field of view and a 190 x 190 lenslet array (14.3 mas/lenslet) operating in YY, JJ, HH, and KK bands with spectral resolving power ranging from RR \sim 35 to 78. Due to variations across the field of view, a unique wavelength solution is determined for each lenslet characterized by a two-dimensional position, the spectral dispersion, and the rotation of the spectrum with respect to the detector axes. The four free parameters are fit using a constrained Levenberg-Marquardt least-squares minimization algorithm, which compares an individual lenslet's arc lamp spectrum to a simulated arc lamp spectrum. This method enables measurement of spectral positions to better than 1/10th of a pixel on the GPI IFS detector using Gemini's facility calibration lamp unit GCAL, improving spectral extraction accuracy compared to earlier approaches. Using such wavelength calibrations we have measured how internal flexure of the spectrograph with changing zenith angle shifts spectra on the detector. We describe the methods used to compensate for these shifts when assembling datacubes from on-sky observations using GPI.Comment: 12 pages, 8 figures. Proceedings of the SPIE, 9147-27

    The Structure of High Strehl Ratio Point-Spread Functions

    Full text link
    We describe the symmetries present in the point-spread function (PSF) of an optical system either located in space or corrected by an adaptive o to Strehl ratios of about 70% and higher. We present a formalism for expanding the PSF to arbitrary order in terms of powers of the Fourier transform of the residual phase error, over an arbitrarily shaped and apodized entrance aperture. For traditional unapodized apertures at high Strehl ratios, bright speckles pinned to the bright Airy rings are part of an antisymmetric perturbation of the perfect PSF, arising from the term that is first order in the residual phase error. There are two symmetric second degree terms. One is negative at the center, and, like the first order term, is modulated by the perfect image's field strength -- it reduces to the Marechal approximation at the center of the PSF. The other is non-negative everywhere, zero at the image center, and can be responsible for an extended halo -- which limits the dynamic range of faint companion detection in the darkest portions of the image. In regimes where one or the other term dominates the speckles in an image, the symmetry of the dominant term can be exploited to reduce the effect of those speckles, potentially by an order of magnitude or more. We demonstrate the effects of both secondary obscuration and pupil apodization on the structure of residual speckles, and discuss how these symmetries can be exploited by appropriate telescope and instrument design, observing strategies, and filter bandwidths to improve the dynamic range of high dynamic range AO and space-based observations. Finally, we show that our analysis is relevant to high dynamic range coronagraphy.Comment: Accepted for publication in ApJ; 20 pages, 4 figure

    Experimental Design for the Gemini Planet Imager

    Full text link
    The Gemini Planet Imager (GPI) is a high performance adaptive optics system being designed and built for the Gemini Observatory. GPI is optimized for high contrast imaging, combining precise and accurate wavefront control, diffraction suppression, and a speckle-suppressing science camera with integral field and polarimetry capabilities. The primary science goal for GPI is the direct detection and characterization of young, Jovian-mass exoplanets. For plausible assumptions about the distribution of gas giant properties at large semi-major axes, GPI will be capable of detecting more than 10% of gas giants more massive than 0.5 M_J around stars younger than 100 Myr and nearer than 75 parsecs. For systems younger than 1 Gyr, gas giants more massive than 8 M_J and with semi-major axes greater than 15 AU are detected with completeness greater than 50%. A survey targeting young stars in the solar neighborhood will help determine the formation mechanism of gas giant planets by studying them at ages where planet brightness depends upon formation mechanism. Such a survey will also be sensitive to planets at semi-major axes comparable to the gas giants in our own solar system. In the simple, and idealized, situation in which planets formed by either the "hot-start" model of Burrows et al. (2003) or the core accretion model of Marley et al. (2007), a few tens of detected planets are sufficient to distinguish how planets form.Comment: 15 pages, 9 figures, revised after referee's comments and resubmitted to PAS

    Science camera calibration for extreme adaptive optics

    Get PDF
    The nascent field of planet detection has yielded a host of extra-solar planet detections. To date, these detections have been the result of indirect techniques: the planet is inferred by precisely measuring its effect on the host star. Direct observation of extra-solar planets remains a challenging yet compelling goal. In this vein, the Center for Adaptive Optics has proposed a ground-based, high-actuator density extreme AO system (XAOPI), for a large (~10 m) telescope whose ultimate goal is to directly evidence a specific class of these objects: young and massive planets. Detailed system wave-front error budgets suggest that this system is a feasible, if not an ambitious, proposition. One key element in this error budget is the calibration and maintenance of the science camera wave front with respect to the wave-front sensor which currently has an allowable contribution of ~ 5 nanometers rms. This talk first summarizes the current status of calibration on existing ground-based AO systems, the magnitude of this effect in the system error budget and current techniques for mitigation. Subsequently, we will explore the nature of this calibration error term, it’s source in the non-commonality between the science camera and wave front sensor, and the effect of the temporal evolution of non-commonality. Finally, we will describe preliminary plans for sensing and controlling this error term. The sensing techniques include phase retrieval, phase contrast and external metrology. To conclude, a calibration scenario that meets the stringent requirement for XAOPI will be discussed

    Science yield estimate with the Wide-Field Infrared Survey Telescope coronagraph

    Get PDF
    The coronagraph instrument (CGI) on the Wide-Field Infrared Survey Telescope will directly image and spectrally characterize planets and circumstellar disks around nearby stars. Here we estimate the expected science yield of the CGI for known radial-velocity (RV) planets and potential circumstellar disks. The science return is estimated for three types of coronagraphs: the hybrid Lyot and shaped pupil are the currently planned designs, and the phase-induced amplitude apodizing complex mask coronagraph is the backup design. We compare the potential performance of each type for imaging as well as spectroscopy. We find that the RV targets can be imaged in sufficient numbers to produce substantial advances in the science of nearby exoplanets. To illustrate the potential for circumstellar disk detections, we estimate the brightness of zodiacal-type disks, which could be detected simultaneously during RV planet observations

    Multimodal advertisement of pregnancy in free-ranging female Japanese macaques (Macaca fuscata)

    Get PDF
    The role of multiple sexual signals in indicating the timing of female ovulation, and discrimination of this timing by males, has been particularly well studied among primates. However the exhibition of pregnancy signals, and how such signals might modulate male post-conception mating decisions, is still poorly understood. Here we aimed to determine if Japanese macaque males use changes in female sexual signals (behavioral, visual and auditory) to discriminate pregnancy and adjust their socio-sexual behaviors. We combined behavioral observations, digital photography and endocrinological (progestogen and estrogen) data, collected systematically during three one-month periods: the pre-conceptive period, the 1st month of pregnancy and the 2nd month of pregnancy. We analyzed variation in the probability of detecting male and female socio-sexual behaviors and estrus calls, as well as changes in female face color parameters, in relation to female reproductive state. Based on our focal observations, we found that males did not copulate during the pregnancy period, and that female socio-sexual behaviors generally decreased from the pre-conceptive to post-conceptive periods. Female face luminance decreased from the pre-conceptive month to the pregnancy period whereas face color only varied between the 1st and 2nd month of gestation. Our results suggest that Japanese macaque females display sexual cues of pregnancy that males might use to reduce energy wasted on non-reproductive copulations with pregnant females. We hypothesize that females advertize their pregnancy through changes in behavioral, visual and potential auditory signals that males can use to adjust their mating behaviors. We finish by discussing implications for male and female post-conception strategies
    corecore