93 research outputs found
Cosmological Parameter Forecasts for a CMB-HD Survey
We present forecasts on cosmological parameters for a CMB-HD survey. For a
CDM + + model, we find
and using CMB and CMB lensing multipoles in the range
of , after adding anticipated residual foregrounds,
delensing the acoustic peaks, and adding DESI BAO data. This is about a factor
of two improvement in ability to probe inflation via compared to
precursor CMB surveys. The constraint can rule out light thermal
particles back to the end of inflation with 95% CL; for example, it can rule
out the QCD axion in a model-independent way assuming the Universe's reheating
temperature was high enough that the axion thermalized. We find that delensing
the acoustic peaks and adding DESI BAO tightens parameter constraints. We also
find that baryonic effects can bias parameters if not marginalized over, and
that uncertainties in baryonic effects can increase parameter error bars;
however, the latter can be mitigated by including information about baryonic
effects from kinetic and thermal Sunyaev-Zel'dovich measurements by CMB-HD. The
CMB-HD likelihood and Fisher estimation codes used here are publicly available;
the likelihood is integrated with Cobaya to facilitate parameter forecasting.Comment: 29 pages, 18 figures, 10 tables. The mock CMB-HD likelihood and
Fisher estimation codes are public at https://github.com/CMB-HD/hdlike and
https://github.com/CMB-HD/hdfisher , respectivel
The Atacama Cosmology Telescope: Modeling the Gas Thermodynamics in BOSS CMASS galaxies from Kinematic and Thermal Sunyaev-Zel'dovich Measurements
The thermal and kinematic Sunyaev-Zel'dovich effects (tSZ, kSZ) probe the
thermodynamic properties of the circumgalactic and intracluster medium (CGM and
ICM) of galaxies, groups, and clusters, since they are proportional,
respectively, to the integrated electron pressure and momentum along the
line-of-sight. We present constraints on the gas thermodynamics of CMASS
galaxies in the Baryon Oscillation Spectroscopic Survey (BOSS) using new
measurements of the kSZ and tSZ signals obtained in a companion paper.
Combining kSZ and tSZ measurements, we measure within our model the amplitude
of energy injection , where is the stellar
mass, to be , and the amplitude of the
non-thermal pressure profile to be (2),
indicating that less than 20% of the total pressure within the virial radius is
due to a non-thermal component. We estimate the effects of including baryons in
the modeling of weak-lensing galaxy cross-correlation measurements using the
best fit density profile from the kSZ measurement. Our estimate reduces the
difference between the original theoretical model and the weak-lensing galaxy
cross-correlation measurements in arXiv:1611.08606 by half, but does not fully
reconcile it. Comparing the kSZ and tSZ measurements to cosmological
simulations, we find that they under predict the CGM pressure and to a lesser
extent the CGM density at larger radii. This suggests that the energy injected
via feedback models in the simulations that we compared against does not
sufficiently heat the gas at these radii. We do not find significant
disagreement at smaller radii. These measurements provide novel tests of
current and future simulations. This work demonstrates the power of joint, high
signal-to-noise kSZ and tSZ observations, upon which future cross-correlation
studies will improve.Comment: Accepted for publication in Physical Review D. Editors' Suggestion.
New Fig. 1-2, Tab.
Atacama Cosmology Telescope: Component-separated maps of CMB temperature and the thermal Sunyaev-Zelâdovich effect
Optimal analyses of many signals in the cosmic microwave background (CMB) require map-level extraction of individual components in the microwave sky, rather than measurements at the power spectrum level alone. To date, nearly all map-level component separation in CMB analyses has been performed exclusively using satellite data. In this paper, we implement a component separation method based on the internal linear combination (ILC) approach which we have designed to optimally account for the anisotropic noise (in the 2D Fourier domain) often found in ground-based CMB experiments. Using this method, we combine multifrequency data from the Planck satellite and the Atacama Cosmology Telescope Polarimeter (ACTPol) to construct the first wide-area (â2100 sq. deg.), arcminute-resolution component-separated maps of the CMB temperature anisotropy and the thermal Sunyaev-Zelâdovich (tSZ) effect sourced by the inverse-Compton scattering of CMB photons off hot, ionized gas. Our ILC pipeline allows for explicit deprojection of various contaminating signals, including a modified blackbody approximation of the cosmic infrared background (CIB) spectral energy distribution. The cleaned CMB maps will be a useful resource for CMB lensing reconstruction, kinematic SZ cross-correlations, and primordial non-Gaussianity studies. The tSZ maps will be used to study the pressure profiles of galaxies, groups, and clusters through cross-correlations with halo catalogs, with dust contamination controlled via CIB deprojection. The data products described in this paper are available on LAMBDA
Atacama Cosmology Telescope: Weighing Distant Clusters with the Most Ancient Light
We use gravitational lensing of the cosmic microwave background (CMB) to measure the mass of the most distant blindly selected sample of galaxy clusters on which a lensing measurement has been performed to date. In CMB data from the the Atacama Cosmology Telescope and the Planck satellite, we detect the stacked lensing effect from 677 near-infrared-selected galaxy clusters from the Massive and Distant Clusters of WISE Survey (MaDCoWS), which have a mean redshift of âšzâ© = 1.08. There are currently no representative optical weak lensing measurements of clusters that match the distance and average mass of this sample. We detect the lensing signal with a significance of 4.2Ï. We model the signal with a halo model framework to find the mean mass of the population from which these clusters are drawn. Assuming that the clusters follow NavarroâFrenkâWhite (NFW) density profiles, we infer a mean mass of âšM_(500c)â© = (1.7±0.4)Ă10ÂčâŽMâ. We consider systematic uncertainties from cluster redshift errors, centering errors, and the shape of the NFW profile. These are all smaller than 30% of our reported uncertainty. This work highlights the potential of CMB lensing to enable cosmological constraints from the abundance of distant clusters populating ever larger volumes of the observable universe, beyond the capabilities of optical weak lensing measurements
The Atacama Cosmology Telescope: Combined kinematic and thermal Sunyaev-Zel'dovich measurements from BOSS CMASS and LOWZ halos
The scattering of cosmic microwave background (CMB) photons off the
free-electron gas in galaxies and clusters leaves detectable imprints on high
resolution CMB maps: the thermal and kinematic Sunyaev-Zel'dovich effects (tSZ
and kSZ respectively). We use combined microwave maps from the Atacama
Cosmology Telescope (ACT) DR5 and Planck in combination with the CMASS and LOWZ
galaxy catalogs from the Baryon Oscillation Spectroscopic Survey (BOSS DR10 and
DR12), to study the gas associated with these galaxy groups. Using individual
reconstructed velocities, we perform a stacking analysis and reject the no-kSZ
hypothesis at 6.5, the highest significance to date. This directly
translates into a measurement of the electron number density profile, and thus
of the gas density profile. Despite the limited signal to noise, the
measurement shows at high significance that the gas density profile is more
extended than the dark matter density profile, for any reasonable baryon
abundance (formally for the cosmic baryon abundance). We
simultaneously measure the tSZ signal, i.e. the electron thermal pressure
profile of the same CMASS objects, and reject the no-tSZ hypothesis at
10. We combine tSZ and kSZ measurements to estimate the electron
temperature to 20% precision in several aperture bins, and find it comparable
to the virial temperature. In a companion paper, we analyze these measurements
to constrain the gas thermodynamics and the properties of feedback inside
galaxy groups. We present the corresponding LOWZ measurements in this paper,
ruling out a null kSZ (tSZ) signal at 2.9 (13.9), and leave their
interpretation to future work. Our stacking software ThumbStack is publicly
available at https://github.com/EmmanuelSchaan/ThumbStack and directly
applicable to future Simons Observatory and CMB-S4 data.Comment: Accepted in Physical Review D, Editors' Suggestio
Genomic epidemiology reveals multiple introductions of Zika virus into the United States
Zika virus (ZIKV) is causing an unprecedented epidemic linked to severe congenital abnormalities. In July 2016, mosquito-borne ZIKV transmission was reported in the continental United States; since then, hundreds of locally acquired infections have been reported in Florida. To gain insights into the timing, source, and likely route(s) of ZIKV introduction, we tracked the virus from its first detection in Florida by sequencing ZIKV genomes from infected patients and Aedes aegypti mosquitoes. We show that at least 4 introductions, but potentially as many as 40, contributed to the outbreak in Florida and that local transmission is likely to have started in the spring of 2016-several months before its initial detection. By analysing surveillance and genetic data, we show that ZIKV moved among transmission zones in Miami. Our analyses show that most introductions were linked to the Caribbean, a finding corroborated by the high incidence rates and traffic volumes from the region into the Miami area. Our study provides an understanding of how ZIKV initiates transmission in new regions
Cumulative Burden of Colorectal Cancer-Associated Genetic Variants Is More Strongly Associated With Early-Onset vs Late-Onset Cancer.
BACKGROUND & AIMS: Early-onset colorectal cancer (CRC, in persons younger than 50 years old) is increasing in incidence; yet, in the absence of a family history of CRC, this population lacks harmonized recommendations for prevention. We aimed to determine whether a polygenic risk score (PRS) developed from 95 CRC-associated common genetic risk variants was associated with risk for early-onset CRC. METHODS: We studied risk for CRC associated with a weighted PRS in 12,197 participants younger than 50 years old vs 95,865 participants 50 years or older. PRS was calculated based on single nucleotide polymorphisms associated with CRC in a large-scale genome-wide association study as of January 2019. Participants were pooled from 3 large consortia that provided clinical and genotyping data: the Colon Cancer Family Registry, the Colorectal Transdisciplinary Study, and the Genetics and Epidemiology of Colorectal Cancer Consortium and were all of genetically defined European descent. Findings were replicated in an independent cohort of 72,573 participants. RESULTS: Overall associations with CRC per standard deviation of PRS were significant for early-onset cancer, and were stronger compared with late-onset cancer (P for interaction = .01); when we compared the highest PRS quartile with the lowest, risk increased 3.7-fold for early-onset CRC (95% CI 3.28-4.24) vs 2.9-fold for late-onset CRC (95% CI 2.80-3.04). This association was strongest for participants without a first-degree family history of CRC (P for interaction = 5.61 à 10-5). When we compared the highest with the lowest quartiles in this group, risk increased 4.3-fold for early-onset CRC (95% CI 3.61-5.01) vs 2.9-fold for late-onset CRC (95% CI 2.70-3.00). Sensitivity analyses were consistent with these findings. CONCLUSIONS: In an analysis of associations with CRC per standard deviation of PRS, we found the cumulative burden of CRC-associated common genetic variants to associate with early-onset cancer, and to be more strongly associated with early-onset than late-onset cancer, particularly in the absence of CRC family history. Analyses of PRS, along with environmental and lifestyle risk factors, might identify younger individuals who would benefit from preventive measures
The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth
We present new measurements of cosmic microwave background (CMB) lensing over
sq. deg. of the sky. These lensing measurements are derived from the
Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which
consists of five seasons of ACT CMB temperature and polarization observations.
We determine the amplitude of the CMB lensing power spectrum at
precision ( significance) using a novel pipeline that minimizes
sensitivity to foregrounds and to noise properties. To ensure our results are
robust, we analyze an extensive set of null tests, consistency tests, and
systematic error estimates and employ a blinded analysis framework. The
baseline spectrum is well fit by a lensing amplitude of
relative to the Planck 2018 CMB power spectra
best-fit CDM model and relative to
the best-fit model. From our lensing power
spectrum measurement, we derive constraints on the parameter combination
of
from ACT DR6 CMB lensing alone and
when combining ACT DR6 and Planck NPIPE
CMB lensing power spectra. These results are in excellent agreement with
CDM model constraints from Planck or
CMB power spectrum measurements. Our lensing measurements from redshifts
-- are thus fully consistent with CDM structure growth
predictions based on CMB anisotropies probing primarily . We find no
evidence for a suppression of the amplitude of cosmic structure at low
redshiftsComment: 45+21 pages, 50 figures. Prepared for submission to ApJ. Also see
companion papers Madhavacheril et al and MacCrann et a
The Atacama Cosmology Telescope: High-resolution component-separated maps across one-third of the sky
Observations of the millimeter sky contain valuable information on a number
of signals, including the blackbody cosmic microwave background (CMB), Galactic
emissions, and the Compton- distortion due to the thermal Sunyaev-Zel'dovich
(tSZ) effect. Extracting new insight into cosmological and astrophysical
questions often requires combining multi-wavelength observations to spectrally
isolate one component. In this work, we present a new arcminute-resolution
Compton- map, which traces out the line-of-sight-integrated electron
pressure, as well as maps of the CMB in intensity and E-mode polarization,
across a third of the sky (around 13,000 sq.~deg.). We produce these through a
joint analysis of data from the Atacama Cosmology Telescope (ACT) Data Release
4 and 6 at frequencies of roughly 93, 148, and 225 GHz, together with data from
the \textit{Planck} satellite at frequencies between 30 GHz and 545 GHz. We
present detailed verification of an internal linear combination pipeline
implemented in a needlet frame that allows us to efficiently suppress Galactic
contamination and account for spatial variations in the ACT instrument noise.
These maps provide a significant advance, in noise levels and resolution, over
the existing \textit{Planck} component-separated maps and will enable a host of
science goals including studies of cluster and galaxy astrophysics, inferences
of the cosmic velocity field, primordial non-Gaussianity searches, and
gravitational lensing reconstruction of the CMB.Comment: The Compton-y map and associated products will be made publicly
available upon publication of the paper. The CMB T and E mode maps will be
made available when the DR6 maps are made publi
- âŠ