1,061 research outputs found

    Resonance in PSR B1257+12 Planetary System

    Full text link
    In this paper we present a new method that can be used for analysis of time of arrival of a pulsar pulses (TOAs). It is designated especially to detect quasi-periodic variations of TOAs. We apply our method to timing observations of PSR B1257+12 and demonstrate that using it it is possible to detect not only first harmonics of a periodic variations, but also the presence of a resonance effect. The resonance effect detected, independently of its physical origin, can appear only when there is a non-linear interaction between two periodic modes. The explanation of TOAs variations as an effect of the existence of planets is, till now, the only known and well justified. In this context, the existence of the resonance frequency in TOAs is the most significant signature of the gravitational interaction of planets.Comment: AASLaTeX + 5 figures (eps files), 15 pages; submitted to Ap

    Influenceof measuring conditions on the quantification of spectroscopic signals inTA-FTIR-MS systems

    Get PDF
    Simultaneous thermal analysis (TA) and evolved gas analysis by mass spectrometry (MS) and/or Fourier transform infrared spectroscopy (FTIR) is a powerful hyphenated technique combining direct measurement of mass loss and sensitive spectroscopic analysis. In the present study the influence of several experimental parameters which may affect the quantification of FTIR signals have been studied using a combined TA-FTIR-MS system. Parameters studied include: sample mass (1-400 mg), carrier gas flow rate (25-200 mL min-1), resolution of the FTIR spectrometer (1-32 cm-1), and location of injection of the calibrating gas. MS analysis, which was not significantly affected by the experimental conditions, was used as a reference for assessing the accuracy of quantification by FTIR. The quantification of the spectroscopic signals was verified by the decomposition (NaHCO3) or dehydration (CuSO4·5H2O) of compounds with well-known stoichiometry. The systematic study of the parametric sensitivity revealed that spectral resolution and carrier gas flow rate, which affect the acquisition time in the IR-cell, are key parameters that must be adjusted carefully for reliable quantification. The dependence of the reliability of quantification on these parameters is illustrated and conditions leading to proper quantification are discussed. As an example, for a standard spectral resolution of 4 cm-1 and a FTIR gas cell volume of 8.7 mL, the carrier gas flow must be lower than 100 mL min-1 for warranting accurate results (relative deviation <2%). The concentration range of analyzed species is limited but can be extended by proper selection of the wavenumber regions for molecules giving strong IR signal

    Supernova Remnant in a Stratified Medium: Explicit, Analytical Approximations for Adiabatic Expansion and Radiative Cooling

    Get PDF
    We propose simple, explicit, analytical approximations for the kinematics of an adiabatic blast wave propagating in an exponentially stratified ambient medium, and for the onset of radiative cooling, which ends the adiabatic era. Our method, based on the Kompaneets implicit solution and the Kahn approximation for the radiative cooling coefficient, gives straightforward estimates for the size, expansion velocity, and progression of cooling times over the surface, when applied to supernova remnants (SNRs). The remnant shape is remarkably close to spherical for moderate density gradients, but even a small gradient in ambient density causes the cooling time to vary substantially over the remnant's surface, so that for a considerable period there will be a cold dense expanding shell covering only a part of the remnant. Our approximation provides an effective tool for identifying the approximate parameters when planning 2-dimensional numerical models of SNRs, the example of W44 being given in a subsequent paper.Comment: ApJ accepted, 11 pages, 2 figures embedded, aas style with ecmatex.sty and lscape.sty package

    Application of random coherence order selection in gradient-enhanced multidimensional NMR

    Get PDF
    Development of multidimensional NMR is essential to many applications, for example in high resolution structural studies of biomolecules. Multidimensional techniques enable separation of NMR signals over several dimensions, improving signal resolution, whilst also allowing identification of new connectivities. However, these advantages come at a significant cost. The Fourier transform theorem requires acquisition of a grid of regularly spaced points to satisfy the Nyquist criterion, while frequency discrimination and acquisition of a pure phase spectrum require acquisition of both quadrature components for each time point in every indirect (non-acquisition) dimension, adding a factor of 2N−1^{N−1} to the number of free-induction decays which must be acquired, where NN is the number of dimensions. Compressed sensing (CS) ℓ1_{1}-norm minimisation in combination with non-uniform sampling (NUS) has been shown to be extremely successful in overcoming the Nyquist criterion. Previously, maximum entropy reconstruction has also been used to overcome the limitation of frequency discrimination, processing data acquired with only one quadrature component at a given time interval, known as random phase detection (RPD), allowing a factor of two reduction in the number of points for each indirect dimension (Maciejewski et al. 2011 PNAS\small \textit{PNAS} 108 16640). However, whilst this approach can be easily applied in situations where the quadrature components are acquired as amplitude modulated data, the same principle is not easily extended to phase modulated (P-/N-type) experiments where data is acquired in the form exp (iωt\textit{iωt}) or exp (−iωt\textit{iωt}), and which make up many of the multidimensional experiments used in modern NMR. Here we demonstrate a modification of the CS ℓ1_1-norm approach to allow random coherence order selection (RCS) for phase modulated experiments; we generalise the nomenclature for RCS and RPD as random quadrature detection (RQD). With this method, the power of RQD can be extended to the full suite of experiments available to modern NMR spectroscopy, allowing resolution enhancements for all indirect dimensions; alone or in combination with NUS, RQD can be used to improve experimental resolution, or shorten experiment times, of considerable benefit to the challenging applications undertaken by modern NMR.This is the final version of the article. It first appeared from IOP Publishing via http://dx.doi.org/10.1088/1742-6596/699/1/01200

    [The Impact of Nuclear Star Formation on Gas Inflow to AGN

    Full text link
    Our adaptive optics observations of nearby AGN at spatial resolutions as small as 0.085arcsec show strong evidence for recent, but no longer active, nuclear star formation. We begin by describing observations that highlight two contrasting methods by which gas can flow into the central tens of parsecs. Gas accumulation in this region will inevitably lead to a starburst, and we discuss the evidence for such events. We then turn to the impact of stellar evolution on the further inflow of gas by combining a phenomenological approach with analytical modelling and hydrodynamic simulations. These complementary perspectives paint a picture in which all the processes are ultimately regulated by the mass accretion rate into the central hundred parsecs, and the ensuing starburst that occurs there. The resulting supernovae delay accretion by generating a starburst wind, which leaves behind a clumpy interstellar medium. This provides an ideal environment for slower stellar outflows to accrete inwards and form a dense turbulent disk on scales of a few parsecs. Such a scenario may resolve the discrepancy between the larger scale structure seen with adaptive optics and the small scale structure seen with VLTI.Comment: to appear in: Co-Evolution of Central Black Holes and Galaxies; 7 page

    The activity and immunoexpression of cathepsin D in rat male reproductive organs

    Get PDF
    Cathepsin D is a cysteine endopeptidase that belongs to the lysosomal enzyme family. The aim of the study was to evaluate the enzyme immunoexpression and activity in selected male genital organs in mature Wistar rats. The activity of cathepsin D was measured spectrophotometrically in homogenates of the testis, epididymis, seminal vesicle and prostate. Immunohistochemical staining was also performed in the ductus deferens. Enzyme activity was found in the following sequence: testis>epididymis>dorsal prostatic lobe>seminal vesicle>lateral prostatic lobe>ventral prostatic lobe. Although there were differences in enzyme activity between various organs of the male reproductive system, cathepsin D immunoreactivity was seen exclusively in the Sertoli and Leydig cells in the testis

    Phase-space structures II: Hierarchical Structure Finder

    Full text link
    A new multi-dimensional Hierarchical Structure Finder (HSF) to study the phase-space structure of dark matter in N-body cosmological simulations is presented. The algorithm depends mainly on two parameters, which control the level of connectivity of the detected structures and their significance compared to Poisson noise. By working in 6D phase-space, where contrasts are much more pronounced than in 3D position space, our HSF algorithm is capable of detecting subhaloes including their tidal tails, and can recognise other phase-space structures such as pure streams and candidate caustics. If an additional unbinding criterion is added, the algorithm can be used as a self-consistent halo and subhalo finder. As a test, we apply it to a large halo of the Millennium Simulation, where 19 % of the halo mass are found to belong to bound substructures, which is more than what is detected with conventional 3D substructure finders, and an additional 23-36 % of the total mass belongs to unbound HSF structures. The distribution of identified phase-space density peaks is clearly bimodal: high peaks are dominated by the bound structures and low peaks belong mostly to tidal streams. In order to better understand what HSF provides, we examine the time evolution of structures, based on the merger tree history. Bound structures typically make only up to 6 orbits inside the main halo. Still, HSF can identify at the present time at least 80 % of the original content of structures with a redshift of infall as high as z <= 0.3, which illustrates the significant power of this tool to perform dynamical analyses in phase-space.Comment: Submitted to MNRAS, 24 pages, 18 figure

    Necessary conditions for classical super-integrability of a certain family of potentials in constant curvature spaces

    Full text link
    We formulate the necessary conditions for the maximal super-integrability of a certain family of classical potentials defined in the constant curvature two-dimensional spaces. We give examples of homogeneous potentials of degree -2 on E2E^2 as well as their equivalents on S2S^2 and H2H^2 for which these necessary conditions are also sufficient. We show explicit forms of the additional first integrals which always can be chosen polynomial with respect to the momenta and which can be of an arbitrary high degree with respect to the momenta

    Straight Line Orbits in Hamiltonian Flows

    Full text link
    We investigate periodic straight-line orbits (SLO) in Hamiltonian force fields using both direct and inverse methods. A general theorem is proven for natural Hamiltonians quadratic in the momenta in arbitrary dimension and specialized to two and three dimension. Next we specialize to homogeneous potentials and their superpositions, including the familiar H\'enon-Heiles problem. It is shown that SLO's can exist for arbitrary finite superpositions of NN-forms. The results are applied to a family of generalized H\'enon-Heiles potentials having discrete rotational symmetry. SLO's are also found for superpositions of these potentials.Comment: laTeX with 6 figure
    • …
    corecore