24 research outputs found

    Automated determination of peripheral nerve stimulation parameters to achieve desired effector response – a procedural routine, preliminary studies and proposal of improvements

    Get PDF
    BACKGROUND: The feasibility of selectively stimulating fascicles and fibers within peripheral nerves has been demonstrated by a number of groups. Although various multi-contact electrodes have been developed for this purpose, the lack of procedures for fast determination of stimulation parameters to produce the desired effector activity hampers the clinical application of these techniques. In this paper, we propose an automated search routine that may facilitate the determination of stimulation parameters. To verify the routine's performance, we also developed an another routine that performs systematic stimulus–response mapping (the mapping routine). METHOD: The mapping routine performs systematic mapping of all possible combinations of the allowed stimulation parameters (i.e. combinations of electrode contacts used to provide the stimulus and sets of stimulus parameters values) and the observed displacements. The proposed automated search routine, similarly to the mapping routine, maps stimulation parameters to muscle responses, but it first investigates stimuli of the low charge and during the mapping process it compares the recorded responses with the desired one. Depending on the result of that comparison, it decides whether the use of a particular combination of electrode contacts should be further investigated or skipped. Both approaches were implemented on a custom-made closed-loop FES platform and preliminary experiments were performed on a rat model. The rat's sciatic nerve was stimulated with a 12-contact cuff electrode and the resulting displacement of the rat's paw was determined using a MEMS accelerometer. RESULTS: The automated search routine was faster than the mapping routine; however, it failed to find correct stimulation parameters in one out of three searches. This could be due to unexpectedly high variability in the responses to a constant stimulus. CONCLUSION: Our initial tests have proven that the proposed method determines the desired stimulation parameters much more quickly than systematic stimulus–response mapping. However, the factors influencing the variability of responses to constant stimuli should be identified, and their influence diminished; the remaining essential variability can then be identified. Thereafter, the criteria influencing the search process should be investigated and refined. Further improvements to the search routine are also proposed

    Vagus nerve stimulation: State of the art of stimulation and recording strategies to address autonomic function neuromodulation

    Get PDF
    International audienceObjective. Neural signals along the vagus nerve (VN) drive many somatic and autonomic functions. The clinical interest of VN stimulation (VNS) is thus potentially huge and has already been demonstrated in epilepsy. However, side effects are often elicited, in addition to the targeted neuromodulation. Approach. This review examines the state of the art of VNS applied to two emerging modulations of autonomic function: heart failure and obesity, especially morbid obesity. Main results. We report that VNS may benefit from improved stimulation delivery using very advanced technologies. However, most of the results from fundamental animal studies still need to be demonstrated in humans

    Investigation of Fibre Size Stimulation Selectivity Using Earthworm Model

    No full text
    International audienceFibre type and diameter selective stimulation may allow to restore various motor and sensory functions of human body that have been lost due to disease or injury. Already many stimulation techniques have been proposed for that purpose. They were verified performing computer simulations and in some cases also by in vivo experiments on mammalian models. Results of computer simulations still need to be confirmed by in vivo experiments, however experiments on mammalian models, due to high number of fibres within stimulated nerve, can be very complex to perform and obtained results difficult to interpret. In this paper, we propose the earthworm (Lumbricus terrestris) as a model for selective stimulation. The earthworm has three giant nerve fibres, with two distinctly different conduction velocities. Therefore it is very easy to distinguish between fibres that are firing at the moment. As a consequence the selectivity of stimulation may be immediately verified without application of sophisticated signal processing and averaging techniques. During performed experiments we have proofed that experimental procedure is simple and the obtained results easy to interpret

    An Experimental Setup for Evaluation of Strategies for Nerve Fibre Diameter Selective Stimulation

    No full text
    International audienceIn recent years various strategies for selective electrical stimulation of nerve fibres with various diameters have been proposed. The operation of most of those strategies have been investigated using computer simulations and in some cases also verified during experiments on mammalians. However, computational models are often too simplified to observe the real phenomena that occurs when stimulating neural tissue. On the other hand, mammalian models are very complex, and therefore results are difficult to interpret. Also due to limitations of stimulators being used, it is not always possible to reproduce the simulated waveforms during experiments on animals. We propose an experimental setup, which allows less complex in vivo evaluation of strategies for selective nerve fibres stimulation and much easier interpretation of the results than in the case of mammalian model. It also overcomes many limitations of hardware used so far for the investigation of selective stimulation strategies

    Realistic model of spine geometry in the human skeleton in the Vicon system

    No full text
    International audienceThe human spine is definitively one of the most important parts of a living body. From biomechanical point of view, this organ is the most complicated structure, and a dynamic analysis of its motion still requires more detailed models be created. The aim of this study is to build an accurate computer model of the geometry of the spine and insert it into available skeleton models, used in Vicon. Up to now such models were simplified and that is why they were not sufficient for research of detailed motion of the spine. The paper describes the process of creating models of the vertebrae. During research, authors simultaneously used two techniques: 3D scanning of the vertebrae and computed modeling in 3D graphics software. A universal data format: .obj used to keep the information about surface shape of an object, its colour, texture etc. is presented in detail. In a discussion on Vicon data formats and relations between them, several file types are taken under consideration: marker files: .mkr, global model parameters files: .mp, files of the model structure: .mod. But first of all, step-by-step instructions of how to connect the files with geometrical objects for the visualization purposes, are presented

    An improved kinematic model of the spine for three-dimensional motion analysis in the Vicon system

    No full text
    International audienceThe mechanism of creation and pathomechanics of lateral spinal deformation is still not fully explained. Modern medical imaging techniques give scientists possibility to understand some aspects, but vast majority of those techniques is based on static trials. A motion capture system belongs to techniques which enable visualization of a spine during dynamic trials; however, due to lack of appropriate computational model, it is unsuitable for scoliosis imaging. A few years ago our group has proposed a kinematic model of the spine to be used with Vicon Motion Capture System, which was based on Bézier curves. That model allowed for much more precise investigation of spinal kinematics during dynamic trials as compared with other computational models. However, it did not allowed to restrict only selected movements for particular segments of the spine (e.g. axial rotation for lumbar spine). The aim of the current work is to improve the proposed model in order to be able to restrict selected movements according to the knowledge concerning spinal anatomy and spinal range of motion. The new kinematic model of the spine was written in BodyBuilder for Biomechanics Language. For the purpose of visualization also an accurate graphical representation of each vertebra (polygon mesh) was computed and adapted to be compatible with the kinematic model. Using a new version of the model it is possible to perform precise analysis of movement of all vertebrae during such dynamic activities as e.g. gait and forward or lateral bending, as well as to present the results not only on the charts, but also as a 3D animation of movements of a realistically looking spine. The paper describes the new kinematic model and the process of creating graphical representation of the vertebrae. Also sample results obtained using that model are presented

    Investigation of the efficiency of the shape of chopped pulses using earthworm model

    No full text
    International audienceIn neural electrical stimulation, limiting the charge delivered during a stimulus pulse is essential to avoid nerve tissue damage and to save power. Previous experimental and modeling studies indicated that waveforms such as non-rectangular continuous pulses or rectangular chopped pulse were able to improve stimulation efficiency. The goal of this study is to evaluate if non-rectangular chopped pulses such as quarter sine and ramp are more charge efficient than rectangular chopped pulse. We performed in vivo study on 17 lumbricus terrestris and compared the charge per stimulating phase needed to activate lateral giant fibers (LGF) and medial giant fiber (MGF) using chopped non-rectangular pulses and rectangular pulse, varying stimulation duration parameters. Results indicated that non rectangular chopped pulses activated MGF and LGF with less charge than rectangular chopped pulses. For MGF (respectively LGF), the gain of charge was up to 33.9\% (resp. 17.8\%) using chopped ramp, and up to 22.8\% (resp. 18.1\%) using chopped quarter sine

    An improved kinematic model of the spine for three-dimensional motion analysis in the Vicon system

    No full text
    International audienceThe mechanism of creation and pathomechanics of lateral spinal deformation is still not fully explained. Modern medical imaging techniques give scientists possibility to understand some aspects, but vast majority of those techniques is based on static trials. A motion capture system belongs to techniques which enable visualization of a spine during dynamic trials; however, due to lack of appropriate computational model, it is unsuitable for scoliosis imaging. A few years ago our group has proposed a kinematic model of the spine to be used with Vicon Motion Capture System, which was based on Bézier curves. That model allowed for much more precise investigation of spinal kinematics during dynamic trials as compared with other computational models. However, it did not allowed to restrict only selected movements for particular segments of the spine (e.g. axial rotation for lumbar spine). The aim of the current work is to improve the proposed model in order to be able to restrict selected movements according to the knowledge concerning spinal anatomy and spinal range of motion. The new kinematic model of the spine was written in BodyBuilder for Biomechanics Language. For the purpose of visualization also an accurate graphical representation of each vertebra (polygon mesh) was computed and adapted to be compatible with the kinematic model. Using a new version of the model it is possible to perform precise analysis of movement of all vertebrae during such dynamic activities as e.g. gait and forward or lateral bending, as well as to present the results not only on the charts, but also as a 3D animation of movements of a realistically looking spine. The paper describes the new kinematic model and the process of creating graphical representation of the vertebrae. Also sample results obtained using that model are presented

    A survey on robotic devices for upper limb rehabilitation

    Get PDF
    International audienceThe existing shortage of therapists and caregivers assisting physically disabled individuals at home is expected to increase and become serious problem in the near future. The patient population needing physical rehabilitation of the upper extremity is also constantly increasing. Robotic devices have the potential to address this problem as noted by the results of recent research studies. However, the availability of these devices in clinical settings is limited, leaving plenty of room for improvement. The purpose of this paper is to document a review of robotic devices for upper limb rehabilitation including those in developing phase in order to provide a comprehensive reference about existing solutions and facilitate the development of new and improved devices. In particular the following issues are discussed: application field, target group, type of assistance, mechanical design, control strategy and clinical evaluation. This paper also includes a comprehensive, tabulated comparison of technical solutions implemented in various systems
    corecore