184 research outputs found

    Heritability and missing heritability

    Get PDF

    Genetic influence on family socioeconomic status and children's intelligence

    Get PDF
    Environmental measures used widely in the behavioral sciences show nearly as much genetic influence as behavioral measures, a critical finding for interpreting associations between environmental factors and children's development. This research depends on the twin method that compares monozygotic and dizygotic twins, but key aspects of children's environment such as socioeconomic status (SES) cannot be investigated in twin studies because they are the same for children growing up together in a family. Here, using a new technique applied to DNA from 3000 unrelated children, we show significant genetic influence on family SES, and on its association with children's IQ at ages 7 and 12. In addition to demonstrating the ability to investigate genetic influence on between-family environmental measures, our results emphasize the need to consider genetics in research and policy on family SES and its association with children's IQ

    Genome-wide association study of receptive language ability of 12 year olds

    Get PDF
    Purpose: We have previously shown that individual differences in measures of receptive language ability at age 12 are highly heritable. The current study attempted to identify some of the genes responsible for the heritability of receptive language ability using a genome-wide association (GWA) approach. Method: We administered four internet-based measures of receptive language (vocabulary, semantics, syntax, and pragmatics) to a sample of 2329 12-year-olds for whom DNA and genome-wide genotyping were available. Nearly 700,000 single-nucleotide polymorphisms (SNPs) and one million imputed SNPs were included in a GWA analysis of receptive language composite scores. Results: No SNP associations met the demanding criterion of genome-wide significance that corrects for multiple testing across the genome (p < 5 ×10-8). The strongest SNP association did not replicate in an additional sample of 2639 12-year-olds. Conclusion: These results indicate that individual differences in receptive language ability in the general population do not reflect common genetic variants that account for >3% of the phenotypic variance. The search for genetic variants associated with language skill will require larger samples and additional methods to identify and functionally characterize the full spectrum of risk variants

    Exploring Extracellular Vesicles of Probiotic Yeast as Carriers of Biologically Active Molecules Transferred to Human Intestinal Cells

    Get PDF
    Extracellular vesicles (EVs) are nanoparticles containing various bioactive cargos—e.g., proteins, RNAs, and lipids—that are released into the environment by all cell types. They are involved in, amongst other functions, intercellular communication. This article presents studies on EVs produced by the probiotic yeast Saccharomyces boulardii CNCM I-745. The size distribution and concentration of EVs in the liquid culture of yeast were estimated. Moreover, the vesicles of S. boulardii were tested for their cytotoxicity against three model human intestinal cell lines. This study did not show any significant negative effect of yeast EVs on these cells under tested conditions. In addition, EVs of S. boulardii were verified for their ability to internalize in vitro with human cells and transfer their cargo. The yeast vesicles were loaded with doxorubicin, an anticancer agent, and added to the cellular cultures. Subsequently, microscopic observations revealed that these EVs transferred the compound to human intestinal cell lines. A cytotoxicity test confirmed the activity of the transferred doxorubicin. Detailed information about the proteins present in EVs might be important in terms of exploring yeast EVs as carriers of active molecules. Thus, proteomic analysis of the EV content was also conducted within the present study, and it allowed the identification of 541 proteins after matching them to the Saccharomyces Genome Database (SGD). Altogether, this study provides strong evidence that the EVs of the probiotic CNCM I-745 strain could be considered a drug delivery system

    Global genetic differentiation of complex traits shaped by natural selection in humans

    Get PDF
    There are mean differences in complex traits among global human populations. We hypothesize that part of the phenotypic differentiation is due to natural selection. To address this hypothesis, we assess the differentiation in allele frequencies of trait-associated SNPs among African, Eastern Asian, and European populations for ten complex traits using data of large sample size (up to ~405,000). We show that SNPs associated with height ([Formula: see text]), waist-to-hip ratio ([Formula: see text]), and schizophrenia ([Formula: see text]) are significantly more differentiated among populations than matched "control" SNPs, suggesting that these trait-associated SNPs have undergone natural selection. We further find that SNPs associated with height ([Formula: see text]) and schizophrenia ([Formula: see text]) show significantly higher variance in linkage disequilibrium (LD) scores across populations than control SNPs. Our results support the hypothesis that natural selection has shaped the genetic differentiation of complex traits, such as height and schizophrenia, among worldwide populations

    The high heritability of educational achievement reflects many genetically influenced traits, not just intelligence.

    Get PDF
    Because educational achievement at the end of compulsory schooling represents a major tipping point in life, understanding its causes and correlates is important for individual children, their families, and society. Here we identify the general ingredients of educational achievement using a multivariate design that goes beyond intelligence to consider a wide range of predictors, such as self-efficacy, personality, and behavior problems, to assess their independent and joint contributions to educational achievement. We use a genetically sensitive design to address the question of why educational achievement is so highly heritable. We focus on the results of a United Kingdom-wide examination, the General Certificate of Secondary Education (GCSE), which is administered at the end of compulsory education at age 16. GCSE scores were obtained for 13,306 twins at age 16, whom we also assessed contemporaneously on 83 scales that were condensed to nine broad psychological domains, including intelligence, self-efficacy, personality, well-being, and behavior problems. The mean of GCSE core subjects (English, mathematics, science) is more heritable (62%) than the nine predictor domains (35–58%). Each of the domains correlates significantly with GCSE results, and these correlations are largely mediated genetically. The main finding is that, although intelligence accounts for more of the heritability of GCSE than any other single domain, the other domains collectively account for about as much GCSE heritability as intelligence. Together with intelligence, these domains account for 75% of the heritability of GCSE. We conclude that the high heritability of educational achievement reflects many genetically influenced traits, not just intelligence

    Improving genetic prediction by leveraging genetic correlations among human diseases and traits

    Get PDF
    Genomic prediction has the potential to contribute to precision medicine. However, to date, the utility of such predictors is limited due to low accuracy for most traits. Here theory and simulation study are used to demonstrate that widespread pleiotropy among phenotypes can be utilised to improve genomic risk prediction. We show how a genetic predictor can be created as a weighted index that combines published genome-wide association study (GWAS) summary statistics across many different traits. We apply this framework to predict risk of schizophrenia and bipolar disorder in the Psychiatric Genomics consortium data, finding substantial heterogeneity in prediction accuracy increases across cohorts. For six additional phenotypes in the UK Biobank data, we find increases in prediction accuracy ranging from 0.7% for height to 47% for type 2 diabetes, when using a multi-trait predictor that combines published summary statistics from multiple traits, as compared to a predictor based only on one trait

    Across-cohort QC analyses of GWAS summary statistics from complex traits.

    Get PDF
    Genome-wide association studies (GWASs) have been successful in discovering SNP trait associations for many quantitative traits and common diseases. Typically, the effect sizes of SNP alleles are very small and this requires large genome-wide association meta-analyses (GWAMAs) to maximize statistical power. A trend towards ever-larger GWAMA is likely to continue, yet dealing with summary statistics from hundreds of cohorts increases logistical and quality control problems, including unknown sample overlap, and these can lead to both false positive and false negative findings. In this study, we propose four metrics and visualization tools for GWAMA, using summary statistics from cohort-level GWASs. We propose methods to examine the concordance between demographic information, and summary statistics and methods to investigate sample overlap. (I) We use the population genetics Fst statistic to verify the genetic origin of each cohort and their geographic location, and demonstrate using GWAMA data from the GIANT Consortium that geographic locations of cohorts can be recovered and outlier cohorts can be detected. (II) We conduct principal component analysis based on reported allele frequencies, and are able to recover the ancestral information for each cohort. (III) We propose a new statistic that uses the reported allelic effect sizes and their standard errors to identify significant sample overlap or heterogeneity between pairs of cohorts. (IV) To quantify unknown sample overlap across all pairs of cohorts, we propose a method that uses randomly generated genetic predictors that does not require the sharing of individual-level genotype data and does not breach individual privacy

    The correlation between reading and mathematics ability at age twelve has a substantial genetic component

    Get PDF
    Dissecting how genetic and environmental influences impact on learning is helpful for maximizing numeracy and literacy. Here we show, using twin and genome-wide analysis, that there is a substantial genetic component to children’s ability in reading and mathematics, and estimate that around one half of the observed correlation in these traits is due to shared genetic effects (so-called Generalist Genes). Thus, our results highlight the potential role of the learning environment in contributing to differences in a child’s cognitive abilities at age twelve
    corecore