2,464 research outputs found

    A Novel Use of Light Guides and Wavelength Shifting Plates for the Detection of Scintillation Photons in Large Liquid Argon Detectors

    Full text link
    Scintillation light generated as charged particles traverse large liquid argon detectors adds valuable information to studies of weakly-interacting particles. This paper uses both laboratory measurements and cosmic ray data from the Blanche dewar facility at Fermilab to characterize the efficiency of the photon detector technology developed at Indiana University for the single phase far detector of DUNE. The efficiency of this technology was found to be 0.48% at the readout end when the detector components were characterized with laboratory measurements. A second determination of the efficiency using cosmic ray tracks is in reasonable agreement with the laboratory determination. The agreement of these two efficiency determinations supports the result that minimum ionizing muons generate Nphot=40,000{\mathcal N}_{phot} = 40,000 photons/MeV as they cross the LAr volume.Comment: Accepted version (without final editorial corrections

    Bi-layer Kinetic Inductance Detectors for space observations between 80-120 GHz

    Full text link
    We have developed Lumped Element Kinetic Inductance Detectors (LEKID) sensitive in the frequency band from 80 to 120~GHz. In this work, we take advantage of the so-called proximity effect to reduce the superconducting gap of Aluminium, otherwise strongly suppressing the LEKID response for frequencies smaller than 100~GHz. We have designed, produced and optically tested various fully multiplexed arrays based on multi-layers combinations of Aluminium (Al) and Titanium (Ti). Their sensitivities have been measured using a dedicated closed-circle 100 mK dilution cryostat and a sky simulator allowing to reproduce realistic observation conditions. The spectral response has been characterised with a Martin-Puplett interferometer up to THz frequencies, and with a resolution of 3~GHz. We demonstrate that Ti-Al LEKID can reach an optical sensitivity of about 1.41.4 101710^{-17}~W/Hz0.5W/Hz^{0.5} (best pixel), or 2.22.2 101710^{-17}~W/Hz0.5W/Hz^{0.5} when averaged over the whole array. The optical background was set to roughly 0.4~pW per pixel, typical for future space observatories in this particular band. The performance is close to a sensitivity of twice the CMB photon noise limit at 100~GHz which drove the design of the Planck HFI instrument. This figure remains the baseline for the next generation of millimetre-wave space satellites.Comment: 7 pages, 9 figures, submitted to A&

    NIKEL: Electronics and data acquisition for kilopixels kinetic inductance camera

    Full text link
    A prototype of digital frequency multiplexing electronics allowing the real time monitoring of microwave kinetic inductance detector (MKIDs) arrays for mm-wave astronomy has been developed. Thanks to the frequency multiplexing, it can monitor simultaneously 400 pixels over a 500 MHz bandwidth and requires only two coaxial cables for instrumenting such a large array. The chosen solution and the performances achieved are presented in this paper.Comment: 21 pages, 14 figure

    Quantification of Ophthalmic Changes After Long-Duration Spaceflight, and Subsequent Recovery

    Get PDF
    A subset of crewmembers are subjected to ophthalmic structure changes due to long-duration spaceflight (>6 months). Crewmembers who experience these changes are described as having Spaceflight Associated Neuro-Ocular Syndrome (SANS). Characteristics of SANS include optic disk edema, cotton wool spots, choroidal folds, refractive error, and posterior globe flattening. SANS remains a major obstacle to deep-space and planetary missions, requiring a better understanding of its etiology. Quantification of ocular, structural changes will improve our understanding of SANS pathophysiology. Methods were developed to quantify 3D optic nerve (ON) and ON sheath (ONS) geometries, ON tortuosity, and posterior globe deformation using MR imaging

    Calculation of the Density of States Using Discrete Variable Representation and Toeplitz Matrices

    Full text link
    A direct and exact method for calculating the density of states for systems with localized potentials is presented. The method is based on explicit inversion of the operator EHE-H. The operator is written in the discrete variable representation of the Hamiltonian, and the Toeplitz property of the asymptotic part of the obtained {\it infinite} matrix is used. Thus, the problem is reduced to the inversion of a {\it finite} matrix

    Electronics and data acquisition demonstrator for a kinetic inductance camera

    Full text link
    A prototype of digital frequency multiplexing electronics allowing the real time monitoring of kinetic inductance detector (KIDs) arrays for mm-wave astronomy has been developed. It requires only 2 coaxial cables for instrumenting a large array. For that, an excitation comb of frequencies is generated and fed through the detector. The direct frequency synthesis and the data acquisition relies heavily on a large FPGA using parallelized and pipelined processing. The prototype can instrument 128 resonators (pixels) over a bandwidth of 125 MHz. This paper describes the technical solution chosen, the algorithm used and the results obtained

    Supersymmetric Quantization of Anisotropic Scalar-Tensor Cosmologies

    Get PDF
    In this paper we show that the spatially homogeneous Bianchi type I and Kantowski-Sachs cosmologies derived from the Brans-Dicke theory of gravity admit a supersymmetric extension at the quantum level. Global symmetries in the effective one-dimensional actions characterize both classical and quantum solutions. A wide family of exact wavefunctions satisfying the supersymmetric constraints are found. A connection with quantum wormholes is briefly discussed.Comment: In Press, Class. Quantum Grav. 20 pages, Late

    Period-doubling bifurcation in strongly anisotropic Bianchi I quantum cosmology

    Get PDF
    We solve the Wheeler-DeWitt equation for the minisuperspace of a cosmological model of Bianchi type I with a minimally coupled massive scalar field ϕ\phi as source by generalizing the calculation of Lukash and Schmidt [1]. Contrarily to other approaches we allow strong anisotropy. Combining analytical and numerical methods, we apply an adiabatic approximation for ϕ\phi, and as new feature we find a period-doubling bifurcation. This bifurcation takes place near the cosmological quantum boundary, i.e., the boundary of the quasiclassical region with oscillating ψ\psi-function where the WKB-approximation is good. The numerical calculations suggest that such a notion of a ``cosmological quantum boundary'' is well-defined, because sharply beyond that boundary, the WKB-approximation is no more applicable at all. This result confirms the adequateness of the introduction of a cosmological quantum boundary in quantum cosmology.Comment: Latest update of the paper at http://www.physik.fu-berlin.de/~mbach/publics.html#
    corecore