70 research outputs found

    Impact of gaseous no 2 on P. fluorescens strain in the membrane adaptation and virulence

    Get PDF
    International audienceNowadays air pollution is increasing due to anthropogenic activity. Among all air pollutants, nitrogen oxides (NOx) such as NO are predominant. It is well known that those compounds exhibit direct toxic effects on human health. However, microorganisms are also exposed to them, but the effect of NOx on the virulence of air microbiota is still poorly understood. In this study, we evaluated the impact of NO on the adaptability and virulence of an airborne strain of P. fluorescens, MFA76a, by exposition of this strain to 45 ppm of NO2. The growth kinetics and cultivability were analysed. A decrease of cultivability coupled with an increase of the lag phase was observed suggesting a potential toxicity of NO2. Since NOx particularly target lipids, the membrane permeability was assessed thanks to Live Dead tests and confocal microscopy. A significant alteration of membrane permeability was observed. Furthermore, more abundant bacterial aggregates were detected compared to the control. Thus, a lipidomic study was performed using MALDI-TOF MS Imaging coupled to HPTLC. Interestingly, bacteria exposed to NO were lacking one putative glycerophospholipid molecule. In agreement with a previous study from Kondakova et al., these data demonstrate the adaptation potential of P. fluorescens MFAF76a to an air pollutant such as NO

    RBM6 splicing factor promotes homologous recombination repair of double-strand breaks and modulates sensitivity to chemotherapeutic drugs

    Get PDF
    RNA-binding proteins regulate mRNA processing and translation and are often aberrantly expressed in cancer. The RNA-binding motif protein 6, RBM6, is a known alternative splicing factor that harbors tumor suppressor activity and is frequently mutated in human cancer. Here, we identify RBM6 as a novel regulator of homologous recombination (HR) repair of DNA double-strand breaks (DSBs). Mechanistically, we show that RBM6 regulates alternative splicing-coupled nonstop-decay of a positive HR regulator, Fe65/APBB1. RBM6 knockdown leads to a severe reduction in Fe65 protein levels and consequently impairs HR of DSBs. Accordingly, RBM6-deficient cancer cells are vulnerable to ATM and PARP inhibition and show remarkable sensitivity to cisplatin. Concordantly, cisplatin administration inhibits the growth of breast tumor devoid of RBM6 in mouse xenograft model. Furthermore, we observe that RBM6 protein is significantly lost in metastatic breast tumors compared with primary tumors, thus suggesting RBM6 as a potential therapeutic target of advanced breast cancer. Collectively, our results elucidate the link between the multifaceted roles of RBM6 in regulating alternative splicing and HR of DSBs that may contribute to tumorigenesis, and pave the way for new avenues of therapy for RBM6-deficient tumors

    Hypersensibilité dentinaire liée à l'éclaircissement des dents vitales

    No full text
    STRASBOURG-Medecine (674822101) / SudocSudocFranceF

    Analytical developments for the analysis of oxygenated metabolites of PAHs (Hydroxylated, Quinones) in sediments

    No full text
    National audiencePolycyclic aromatic hydrocarbons (PAHs) are toxic and carcinogenic pollutants produced in majority by incomplete combustion processes in industrialized and urbanized areas. After being emitted in atmosphere, these persistent contaminants are deposited to soils or sediments. Even if persistent, some can be partially degraded (photodegradation, biodegradation, chemical oxidation) and they lead to oxygenated metabolites (oxy-PAHs) which can be more toxic than their parent PAH. Oxy-PAHs are less measured than PAHs in sediments and this study aims to compare different analytical tools in order to extract and quantify a mixture of four hydroxylated PAHs (OH-PAHs) and four carbonyl PAHs (quinones) in sediments. Methodologies: Two analytical systems-HPLC with on-line UV and fluorescence detectors (HPLC-UV-FLD) and GC coupled to a mass spectrometer (GC-MS)-were compared to separate and quantify oxy-PAHs. Microwave assisted extraction (MAE) was optimized to extract oxy-PAHs from sediments. Results: First OH-PAHs and quinones were analyzed in HPLC with on-line UV and fluorimetric detectors. OH-PAHs were detected with the sensitive FLD, but the non-fluorescent quinones were detected with UV. The limits of detection (LOD)s obtained were in the range (2-3)×10-4 mg/L for OH-PAHs and (2-3)×10-3 mg/L for quinones. Second, even if GC-MS is not well adapted to the analysis of the thermodegradable OH-PAHs and quinones without any derivatization step, it was used because of the advantages of the detector in terms of identification and the advantages of GC in terms of efficiency. Without derivatization, only two of the four quinones were detected in the range 1-10 mg/L (LODs=0.3-1.2 mg/L) and LODs were neither very satisfying for the four OH-PAHs (0.18-0.6 mg/L). So two derivatization processes were optimized, comparing to literature: one for silylation of OH-PAHs, one for acetylation of quinones. Silylation using BSTFA/TCMS 99/1 was enhanced using a mixture of catalyst solvents (pyridine/ethyle acetate) and finding the appropriate reaction duration (5-60 minutes). Acetylation was optimized at different steps of the process, including the initial volume of compounds to derivatize, the added amounts of Zn (0.1-0.25 g), the nature of the derivatization product (acetic anhydride, heptafluorobutyric acid…) and the liquid/liquid extraction at the end of the process. After derivatization, LODs were decreased by a factor 3 for OH-PAHs and by a factor 4 for quinones, all the quinones being now detected. Thereafter, quinones and OH-PAHs were extracted from spiked sediments using microwave assisted extraction (MAE) followed by GC-MS analysis. Several mixtures of solvents of different volumes (10-25 mL) and using different extraction temperatures (80-120°C) were tested to obtain the best recovery yields. Satisfactory recoveries could be obtained for quinones (70-96%) and for OH-PAHs (70-104%). Temperature was a critical factor which had to be controlled to avoid oxy-PAHs degradation during the MAE extraction process. Conclusion: Even if MAE-GC-MS was satisfactory to analyze these oxy-PAHs, MAE optimization has to be carried on to obtain a most appropriate extraction solvent mixture, allowing a direct injection in the HPLC-UV-FLD system, which is more sensitive than GC-MS and does not necessitate a previous long derivatization step

    Geophysical and geochemical characterisation of a site impacted by hydrocarbon contamination undergoing biodegradation

    No full text
    (IF 1.06; Q3)International audienceHydrocarbon contamination, which can alter the physiochemical and biological properties of the subsurface, can be monitored by using geochemical analyses and integrated geophysical techniques. Electrical resistivity tomography, induced polarization, ground-penetrating radar, and self-potential methods were used in this work to characterise the hydrocarbon contamination and investigate the geoelectrical properties of a site impacted by an aged hydrocarbon plume. Throughout the investigation, geoelectrical measurements supported the conductive plume model and consistently recorded low-resistivity anomalies and high-chargeability values in the contaminated aquifer. Furthermore, the low-resistivity anomalies were found to be coincident with regions of ground-penetrating radar attenuated reflections and significant negative self-potential anomalies associated with oxidation– reduction processes. These findings were supported by the geochemical measurements, which revealed depleted concentrations of terminal electron acceptors (TEAs) and elevated amounts of ions and total dissolved solids, which could be attributed to bacterial biodegradation of hydrocarbons. The study showed that biological alterations of hydrocarbon-induced subtle changes in the pore water biogeochemistry, which consequently modified the geophysical properties of the contaminated sediments. Based on these observations, the extent of groundwater contamination was delineated according to the geophysical contrast between the contaminated and clean zones. The combination of different geophysical methods constrained by geochemical point measurements provided insight on the different processes that might have modified the soil and groundwater biogeochemical properties
    • …
    corecore