442 research outputs found

    Piecewise smooth systems near a co-dimension 2 discontinuity manifold: can one say what should happen?

    Full text link
    We consider a piecewise smooth system in the neighborhood of a co-dimension 2 discontinuity manifold Σ\Sigma. Within the class of Filippov solutions, if Σ\Sigma is attractive, one should expect solution trajectories to slide on Σ\Sigma. It is well known, however, that the classical Filippov convexification methodology is ambiguous on Σ\Sigma. The situation is further complicated by the possibility that, regardless of how sliding on Σ\Sigma is taking place, during sliding motion a trajectory encounters so-called generic first order exit points, where Σ\Sigma ceases to be attractive. In this work, we attempt to understand what behavior one should expect of a solution trajectory near Σ\Sigma when Σ\Sigma is attractive, what to expect when Σ\Sigma ceases to be attractive (at least, at generic exit points), and finally we also contrast and compare the behavior of some regularizations proposed in the literature. Through analysis and experiments we will confirm some known facts, and provide some important insight: (i) when Σ\Sigma is attractive, a solution trajectory indeed does remain near Σ\Sigma, viz. sliding on Σ\Sigma is an appropriate idealization (of course, in general, one cannot predict which sliding vector field should be selected); (ii) when Σ\Sigma loses attractivity (at first order exit conditions), a typical solution trajectory leaves a neighborhood of Σ\Sigma; (iii) there is no obvious way to regularize the system so that the regularized trajectory will remain near Σ\Sigma as long as Σ\Sigma is attractive, and so that it will be leaving (a neighborhood of) Σ\Sigma when Σ\Sigma looses attractivity. We reach the above conclusions by considering exclusively the given piecewise smooth system, without superimposing any assumption on what kind of dynamics near Σ\Sigma (or sliding motion on Σ\Sigma) should have been taking place.Comment: 19 figure

    Quantum decision making by social agents

    Full text link
    The influence of additional information on the decision making of agents, who are interacting members of a society, is analyzed within the mathematical framework based on the use of quantum probabilities. The introduction of social interactions, which influence the decisions of individual agents, leads to a generalization of the quantum decision theory developed earlier by the authors for separate individuals. The generalized approach is free of the standard paradoxes of classical decision theory. This approach also explains the error-attenuation effects observed for the paradoxes occurring when decision makers, who are members of a society, consult with each other, increasing in this way the available mutual information. A precise correspondence between quantum decision theory and classical utility theory is formulated via the introduction of an intermediate probabilistic version of utility theory of a novel form, which obeys the requirement that zero-utility prospects should have zero probability weights.Comment: This paper has been withdrawn by the authors because a much extended and improved version has been submitted as arXiv:1510.02686 under the new title "Role of information in decision making of social agents

    How brains make decisions

    Full text link
    This chapter, dedicated to the memory of Mino Freund, summarizes the Quantum Decision Theory (QDT) that we have developed in a series of publications since 2008. We formulate a general mathematical scheme of how decisions are taken, using the point of view of psychological and cognitive sciences, without touching physiological aspects. The basic principles of how intelligence acts are discussed. The human brain processes involved in decisions are argued to be principally different from straightforward computer operations. The difference lies in the conscious-subconscious duality of the decision making process and the role of emotions that compete with utility optimization. The most general approach for characterizing the process of decision making, taking into account the conscious-subconscious duality, uses the framework of functional analysis in Hilbert spaces, similarly to that used in the quantum theory of measurements. This does not imply that the brain is a quantum system, but just allows for the simplest and most general extension of classical decision theory. The resulting theory of quantum decision making, based on the rules of quantum measurements, solves all paradoxes of classical decision making, allowing for quantitative predictions that are in excellent agreement with experiments. Finally, we provide a novel application by comparing the predictions of QDT with experiments on the prisoner dilemma game. The developed theory can serve as a guide for creating artificial intelligence acting by quantum rules.Comment: Latex file, 20 pages, 3 figure

    Investigation of livestock for presence of Trypanosoma brucei gambiense in Tafa Local Government Area of Niger State, Nigeria

    Get PDF
    The study investigated the presence of Trypanosoma brucei gambiense in livestock to ascertain their reservoir role and also screened for other pathogenic trypanosomes of animals in Tafa Local Government Area of Niger state, Nigeria. A total of 460 livestock comprising (cattle, sheep, goats, and dogs) selected at random were bled, examined using the buffy coat and Giemsa stained thin film and packed cell volume estimated. Questionnaire was filled for each animal on demography, awareness and management practices. An overall prevalence of 2.17% with Trypanosoma brucei, T. congolense, T. vivax and a mixed infection of T. brucei and T. congolense observed microscopically awaiting characterization. Interviews revealed high awareness (82.8%) of tsetse and trypanosomiasis described as bush disease and abortion in four cows. The PCV values were within the normal range, however, a significant decrease (P<0.05) was observed in sheep aged 7months to 4years in two communities. Therefore, the study indicated the presence of T. brucei and other trypanosomes suggesting that animal trypanosomiasis is still a problem to animal health and wellbeing in the study area. The study recommends effective integrated chemotherapy and vector control including livestock rearing under intensive management system to boost livestock production and productivity

    Comonotonic Independence: The Critical Test between Classical and Rank-Dependent Utility Theories

    Get PDF
    This article compares classical expected utility (EU) with the more general rank-dependent utility (RDU) models. The difference between the independence condition for preferences of EU and its comonotonic generalization in RDU provides the exact demarcation between EU and rank-dependent models. Other axiomatic differences are not essential. An experimental design is described that tests this difference between independence and comonotonic independence in its most basic form and is robust against violations of other assumptions that may confound the results, in particular the reduction principle and transitivity. It is well known that in the classical counterexamples to EU, comonotonic independence performs better than full-force independence. For our more general choice pairs, however, we find that comonotonic independence does not perform better. This is contrary to our prior expectation and suggests that rank-dependent models, in full generality, do not provide a descriptive improvement over EU. For rank-dependent models to have a future, submodels and choice situations need to be identified for which rank-dependence does contribute descriptively

    Unifying Decision-Making: a Review on Evolutionary Theories on Rationality and Cognitive Biases

    Full text link
    In this paper, we make a review on the concepts of rationality across several different fields, namely in economics, psychology and evolutionary biology and behavioural ecology. We review how processes like natural selection can help us understand the evolution of cognition and how cognitive biases might be a consequence of this natural selection. In the end we argue that humans are not irrational, but rather rationally bounded and we complement the discussion on how quantum cognitive models can contribute for the modelling and prediction of human paradoxical decisions
    • …
    corecore